69
Views
4
CrossRef citations to date
0
Altmetric
Production Engineering

Quantitative evolution of pores in tight sandstone reservoirs: a case study of late Triassic Chang 6 member, Western Ordos Basin, China

ORCID Icon, &
Pages 1766-1782 | Published online: 01 Dec 2022
 

Abstract

In order to understand pore evolution in relation to sedimentary facies, a study has been conducted on the Chang 6 reservoir in Western Ordos Basin. Tight reservoir space comprises primary intergranular pores with an average original porosity is 36.29%, and secondary pores related to feldspar dissolution. Reservoir porosity is 8.03–11.43% and permeability is 0.12 × 10−3–1.31 × 10−3 μm2. Cementation and mechanical compaction are the main reasons for the quality of the reservoir. Dissolution of feldspar grains improved the reservoir quality. The reservoir has undergone four evolutionary stages: ① Syn-sedimentary compaction which decreased the porosity by 21.27%, to an average remaining porosity was 15.12%. ② Early diagenetic cementation which decreased the porosity by 6.23% to an average residual porosity was 8.89%. ③ Early stage of mesodiagenesis: involving dissolution and formation of micro-fractures that led to an increase in porosity by 5.47% resulting in an average porosity of 14.36%. ④ Compaction and cementation during the late mesodiagenetic stage resulting in an average porosity of 10.87%. Quantitative calculations reveal an average reservoir porosity is 10.68% with an error of 1.75%. The results contribute to a better understanding of the main controlling factors and pore evolution characteristics of tight reservoir development.

Acknowledgments

We thank Professor Kenneth A. Eriksson for his guidance and help in the process of writing the paper.

Additional information

Funding

This research was supported by the NSFC (No. 41302076) and Shaanxi Natural Science Foundation (No. 14JS081).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.