109
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Potential implications of matrix metalloproteinase-9 in assessment and treatment of coronary artery disease

, , , , &
Pages 118-129 | Accepted 21 Jan 2009, Published online: 01 Mar 2009
 

Abstract

Background: Matrix metalloproteinase (MMP)-9, a member of the MMP superfamily is consistently implicated in the pathophysiology of atherosclerosis and plaque rupture, the most common mechanism responsible for acute coronary syndrome (ACS).

Aim: To summarize the role of MMP-9 in atherosclerosis and its potential implications in assessment and treatment of coronary artery disease (CAD).

Methods: We reviewed the PubMed database for relevant data regarding the role of MMP-9 in the pathophysiology of atherosclerosis. In the light of these data, we postulate potential implications of MMP-9 in the management and treatment of CAD.

Results and conclusions: Existing data strongly support the role of MMP-9 in plaque destabilization and rupture. Based on the current knowledge, MMP-9 can potentially serve as a diagnostic biomarker in ACS and a prognostic biomarker in ACS and chronic CAD patients. MMP-9 is reduced by therapies that are associated with favourable outcome in atherosclerosis and thus may serve as a surrogate biomarker of treatment efficacy. However, large morbidity and mortality trials are still required to confirm that MMP-9 reduction is associated with improved outcome independent of the traditional risk factors (i.e. low-density lipoprotein cholesterol). Given its role in plaque rupture, inhibition of MMP-9 may promote plaque stabilization and consequently reduce cardiovascular events. Yet, the efficacy and safety of MMPs inhibitors should be first studied in preclinical models of atherosclerosis.

Acknowledgements

Declaration of interest: Tu T Nguyen, Robert Wolk, Robert J Aiello, Steven G Terra, and David A Fryburg are all employees and shareholders of Pfizer, Inc. This paper was prepared while Yuval Konstantino was supported by the Israel Heart Society-Pfizer postdoctoral fellowship in cardiovascular drug development.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 527.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.