24
Views
2
CrossRef citations to date
0
Altmetric
Short Communication

Glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system of mice

, , , &
Pages 571-581 | Received 23 Jun 2005, Accepted 25 Sep 2005, Published online: 10 Jul 2009
 

Abstract

Induction of apoptosis by rabies virus (RV) has been reported to be associated with the expression of the glycoprotein (G), but inversely correlated with pathogenicity. To further delineate the association between the expression of the G and the induction of apoptosis, recombinant RVs with replacement of only the G gene were used to infect mice by the intracerebral route. Recombinant viruses expressing the G from attenuated viruses expressed higher level of the G and induced more apoptosis in mice than recombinant RV expressing the G from wild-type (wt) or pathogenic RV, demonstrating that it is the G gene that determines the level of G expression and, consequently, the induction of apoptosis. Likewise, recombinant viruses expressing the G from wt or pathogenic RV are more pathogenic in mice than those expressing G from attenuated RV, confirming the inverse correlation between RV pathogenicity and the induction of apoptosis. To investigate the mechanism by which induction of apoptosis attenuates viral pathogenicity, mice were infected with wt or attenuated RV by the intramuscular route. It was found that low doses of attenuated RV induced apoptosis in the spinal cord and failed to spread to the brain or produce neurological disease. On the other hand, apoptosis was not observed in the spinal cord of mice infected with the same doses of wt RV and the virus spread to various parts of the brain and induced fatal neurologic disease. These results suggest that glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system (CNS) of mice.

This work is supported partially by Public Health Service grant AI-051560 from the National Institute of Allergy and Infectious Diseases (ZFF) and Canadian Institutes of Health Research grant MOP-64376 (ACJ). The authors express their gratitude to Dr. Charles E. Rupprecht at the CDC for supplying anti-N monoclonal antibody 802-2.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.