40
Views
0
CrossRef citations to date
0
Altmetric
Original

Dermatophytes growth curve and in vitro susceptibility test: a broth micro-titration method

, MD, , , &
Pages 319-325 | Published online: 09 Jul 2009
 

Abstract

The introduction of systemic antifungal drugs which act upon different targets is the main issue of the in-vivo antifungal resistance control. Different factors, such as growth curve phase, quality of the specimen, quantity of the inoculum, temperature, pH, culture medium composition, incubation duration and solvent, are believed important factors affecting minimum inhibitory concentration (MIC) value to most of the antifungal agents. We assayed an in vitro susceptibility test with 40 isolates of dermatophytes: Microsporum canis, Trichophyton rubrum, Trichophyton mentagrophytes and Epidermophyton floccosum against griseofulvin, fluconazole, itraconazole and terbinafine, using the guidelines of the M38-P document approved by the NCCLS. We determined the growth curves, to estimate the specific growth rate (µ max) and the generation time (G) of each dermatophyte, using dry weight and spectrophotometry methods. We demonstrate that, at 192 h, all fungi tested had a constant growth curve and we considered this as the optimal time for MIC determination. Terbinafine, griseofulvin and itraconazole possessed the highest antifungal activity against the four groups of dermatophytes studied. Fluconazole demonstrated no efficacy. Our MIC results differ from other authors and this difference is due to the timing of the MIC determination based on the growth curve of each fungi tested.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.