46
Views
4
CrossRef citations to date
0
Altmetric
Original

In vitro immunologic properties of human umbilical cord perivascular cells

, , &
Pages 174-181 | Published online: 07 Jul 2009
 

Abstract

Background

It has been shown recently that human umbilical cord perivascular cells (HUCPVC) are bio-equivalent to bone marrow-derived mesenchymal stromal cells (BM-MSC) in their mesenchymal differentiation and marker expression. HUCPVC populations provide high yields of rapidly proliferating mesenchymal progenitor cells. The question we wished to address, in two independent laboratory studies, was whether HUCPVC exhibit a similar in vitro immunologic phenotype to that of BM-MSC.

Methods

HUCPVC were isolated by physical extraction of umbilical vessels followed by enzymatic digestion of the perivascular cells, and lymphocytes were obtained from heparinized human peripheral blood. Experimental evaluations were lymphocyte proliferation in HUPCVC or BM-MSC co-cultures with peripheral blood lymphocytes (PBL), mixed lymphocyte cultures (MLC) containing BM-MSC or HUCPVC, CD25 and CD45 expression in co-cultures containing HUCPVC, and finally lymphocyte proliferation in TransWell MLC with HUCPVC.

Results

Both HUCPVC and BM-MSC showed no significant increase in proliferation of lymphocytes when co-cultured. The addition of 10% HUCPVC or BM-MSC significantly reduced proliferation of PBL in one-way MLC. Upon inclusion of HUCPVC with activated T-cell lines, the expression of both CD25 and CD45 showed a significant decrease. HUCPVC were able to reduce lymphocyte cell numbers significantly when separated with a membrane insert.

Discussion

HUCPVC are not alloreactive and exhibit immunosuppression in vitro. Lymphocyte activation is significantly reduced in the presence of HUCPVC, and the immunosuppressive effect of HUCPVC is due, in part, to a soluble factor. Thus HUCPVC shows a similar immunologic phenotype to BM-MSC.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.