113
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Electronic and magnetic properties of boron substituted CuFeO2 delafossite oxide

, , , , , & show all
Received 24 Dec 2023, Accepted 23 Mar 2024, Published online: 04 Apr 2024
 

ABSTRACT

Synchrotron x-ray diffraction (SR-XRD) and X-ray absorption fine structure spectroscopy (XAFS) were used to investigate the crystal and electronic properties of boron-substituted CuFeO2 material at room temperature. Without boron substitution, the polycrystalline structures of the trigonal (rhombohedral) ‘R3¯m’ CuFeO2 (87.7%) and hexagonal ‘P63/mmc’ (12.3%), which were also present in each sample but in different proportions, were utilised to identify the base material. XRD patterns revealed that, beyond 10% boron substitution, the metal–oxygen bonds (Fe-O and Cu-O) weakened, resulting in the formation of new tetragonal ‘I41/amd’ CuFe2O4 crystals. Although the CuFeO2 structure was preserved, it is conceivable that the presence of other crystal structures could lead to the formation of new features. This state arose as a result of CuFe2O4 crystallization and the impact of boron activity on the surrounding oxygen structures. By measuring magnetisation at both swept temperatures (10–300 K) and applied magnetic fields (±30 kOe), the magnetic properties of the samples were investigated. In the 10–300 K temperature range, the polycrystalline samples exhibit a ferromagnetic property without a magnetic phase transition. This suggests that replacing B with Fe in CuFe1−xBxO2 does not influence the primary magnetic property of CuFeO2. The samples’ saturation magnetisation (Ms) values gradually fall as the B substitution content increases with Fe. This is because there's a chance that the non-transition metal B in CuFe1−xBxO2 will boost antiferromagnetic superexchange Cu-O interactions while lowering the p-d exchange interaction.

GRAPHICAL ABSTRACT

Acknowledgment

XAFS (proposal no. 2022B1663) and SR-XRD (proposal no. 2022B1664) measurements were performed at the SPring-8 synchrotron facility with approval from the Japan Synchrotron Radiation Research Institute (JASRI).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study is partly supported by the 2219 program of The Scientific and Technological Research Council of Turkey (TÜBİTAK) with Ref. No. 53325897-115.02-152809.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.