363
Views
21
CrossRef citations to date
0
Altmetric
Review

The role of secreted heat shock protein-90 (Hsp90) in wound healing - how could it shape future therapeutics?

, &
Pages 665-675 | Received 14 Apr 2017, Accepted 11 Jul 2017, Published online: 31 Jul 2017
 

ABSTRACT

Introduction: Defects in tissue repair or wound healing pose a clinical, economic and social problem worldwide. Despite decades of studies, there have been few effective therapeutic treatments.

Areas covered: We discuss the possible reasons for why growth factor therapy did not succeed. We point out the lack of human disorder-relevant animal models as another blockade for therapeutic development. We summarize the recent discovery of secreted heat shock protein-90 (Hsp90) as a novel wound healing agent.

Expert commentary: Wound healing is a highly complex and multistep process that requires participations of many cell types, extracellular matrices and soluble molecules to work together in a spatial and temporal fashion within the wound microenvironment. The time that wounds remain open directly correlates with the clinical mortality associated with wounds. This time urgency makes the healing process impossible to regenerate back to the unwounded stage, rather forces it to take many shortcuts in order to protect life. Therefore, for therapeutic purpose, it is crucial to identify so-called ‘driver genes’ for the life-saving phase of wound closure. Keratinocyte-secreted Hsp90α was discovered in 2007 and has shown the promise by overcoming several key hurdles that have blocked the effectiveness of growth factors during wound healing.

Acknowledgments

We thank USC Pathology Core for preparations of tissue histology slides.

Declaration of interest

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Additional information

Funding

This study is supported by United States Department of Health National Institutes of Health grants: GM066193 and GM067100 (WL), AR46538 (DTW), AR33625 (MC and DTW) and VA Merit Award (DTW).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 641.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.