660
Views
17
CrossRef citations to date
0
Altmetric
Original Article

Effect of low-frequency gain and venting effects on the benefit derived from directionality and noise reduction in hearing aids

, , &
Pages 554-568 | Received 19 Apr 2006, Published online: 07 Jul 2009
 

Abstract

When the frequency range over which vent-transmitted sound dominates amplification increases, the potential benefit from directional microphones and noise reduction decreases. Fitted with clinically appropriate vent sizes, 23 aided listeners with varying low-frequency hearing thresholds evaluated six schemes comprising three levels of gain at 250 Hz (0, 6, and 12 dB) combined with two features (directional microphone and noise reduction) enabled or disabled in the field. The low-frequency gain was 0 dB for vent-dominated sound, while the higher gains were achieved by amplifier-dominated sounds. A majority of listeners preferred 0-dB gain at 250 Hz and the features enabled. While the amount of low-frequency gain had no significant effect on speech recognition in noise or horizontal localization, speech recognition and front/back discrimination were significantly improved when the features were enabled, even when vent-transmitted sound dominated the low frequencies. The clinical implication is that there is no need to increase low-frequency gain to compensate for vent effects to achieve benefit from directionality and noise reduction over a wider frequency range.

Acronyms
AI-DI=

Articulation index weighted directivity index

ANOVA=

Analysis of variance

BKB=

Bamford-Kowal-Bench sentences

BTE=

Behind-the-ear

CD=

Compact disc

DI=

Directivity index

famplified=

Frequency at which the amplified region begins

fvent=

Frequency at which the vent stops transmitting sounds into the ear

HTL=

Hearing threshold level

ITE=

In-the-ear

ITC=

In-the-canal

KEMAR=

Knowles Electronics Manikin for Acoustic Research

MPO=

Maximum power output

OE/i/=

Occlusion effect for the vocalized /i/ sound

REIG=

Real-ear insertion gain

REOIG=

Real-ear occluded insertion gain

REOIGown=

Real-ear occluded insertion gain for own voice

REUG=

Real-ear unaided gain

RMS=

Root mean square

SPL=

Sound pressure level

SNR=

Signal-to-noise ratio

W=

Kendall coefficient of concordance

WDRC=

Wide dynamic range compression

Acronyms
AI-DI=

Articulation index weighted directivity index

ANOVA=

Analysis of variance

BKB=

Bamford-Kowal-Bench sentences

BTE=

Behind-the-ear

CD=

Compact disc

DI=

Directivity index

famplified=

Frequency at which the amplified region begins

fvent=

Frequency at which the vent stops transmitting sounds into the ear

HTL=

Hearing threshold level

ITE=

In-the-ear

ITC=

In-the-canal

KEMAR=

Knowles Electronics Manikin for Acoustic Research

MPO=

Maximum power output

OE/i/=

Occlusion effect for the vocalized /i/ sound

REIG=

Real-ear insertion gain

REOIG=

Real-ear occluded insertion gain

REOIGown=

Real-ear occluded insertion gain for own voice

REUG=

Real-ear unaided gain

RMS=

Root mean square

SPL=

Sound pressure level

SNR=

Signal-to-noise ratio

W=

Kendall coefficient of concordance

WDRC=

Wide dynamic range compression

Sumario

Cuando aumenta el rango de frecuencia sobre el que el sonido transmitido a través de la ventilación que domina la amplificación, el beneficio potencial de los micrófonos direccionales y la reducción de ruido disminuye. Veintitrés oyentes con umbrales variables en frecuencias bajas, adaptados con ventilación clínicamente apropiada, evaluaron seis esquemas que comprendían tres niveles de ganancia a 250Hz (0, 6 y 12 dB) combinando la activación de dos condiciones en la situación auditiva (micrófono direccional y reducción de ruido). La ganancia de la frecuencia auditiva fue 0 dB para el sonido dominado por la ventilación, mientras que la mayor ganancia se logró en los sonidos dominados por la amplificación. La mayoría de los oyentes prefirieron la ganancia de 0 dB en 250 Hz y las dos condiciones activadas. Mientras que el monto de ganancia en frecuencias graves no tuvo un efecto significativo en el reconocimiento del lenguaje en ruido o la localización horizontal, el reconocimiento del lenguaje y la discriminación atrás/adelante mejoraron significativamente cuando las condiciones fueron activadas, incluso cuando el sonido transmitido por la ventilación dominaba las frecuencias bajas. La implicación clínica es que no hay necesidad de aumentar la ganancia en las frecuencias bajas para compensar el efecto de la ventilación y lograr así un beneficio en la direccionalidad y la reducción del ruido sobre el rango de frecuencia.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 194.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.