993
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Phytoremediation of petroleum hydrocarbons by using a freshwater fern species Azolla filiculoides Lam

, , , &
Pages 467-476 | Published online: 22 Feb 2016
 

ABSTRACT

In this study, the phytoremediation capacity of Azolla filiculoides Lam. for the water resources contaminated with petroleum hydrocarbons was investigated. The plants were grown in nitrogen-free Hoagland nutrient solution containing 0.005%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% crude oil under greenhouse conditions for 15 days. Although the growth rate of the plants were not negatively influenced by the presence of crude oil in the media for the concentration of 0.005% and 0.01% v/v, a gradual impeding effect of crude oil in the growth media has been observed at concentrations 0.05–0.1%. More than 0.1% crude oil in the growth medium ostensibly retarded the growth. For example, 0.2% oil in the media reduced growth approximately 50% relative to the control, and the presence of crude oil at concentrations 0.3% or more were lethal. The data about the percentage of plant growth, fresh weight increase and root growth clearly indicated that the tolerance level of A. filiculoides plants to crude oil ranges between 0.1% and 0.2%. In comparison to control samples, the biodegradation rate of total aliphatic and aromatic (phenathrene) hydrocarbons at 0.05–0.2% oil concentrations, was 94–73% and 81–77%, respectively. On the other hand, in case of further increases in oil concentration in media, i.e.; 0.3–0.5%, the biodegradation rate was still higher in the experimental samples, respectively 71–63% and 75–71%. The high biodegradation rates of petroleum hydrocarbons in the experimental samples suggested that A. filiculoides plants could be a promising candidate to be used for the phytoremediation of low crude oil contaminated precious freshwater resources.

Acknowledgments

This work was supported by the Scientific and Technological Council of Turkey, Project number, 105G079 and Istanbul University Research Fund (Project No: 2227). We thank Ali Danaci and Ilyas Gonul for technical assistance.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 382.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.