240
Views
2
CrossRef citations to date
0
Altmetric
Articles

Trigeminal neurons detect cellphone radiation: Thermal or nonthermal is not the question

, &
Pages 123-131 | Received 27 Jan 2016, Accepted 13 Mar 2016, Published online: 15 Jul 2016
 

ABSTRACT

Cellphone electromagnetic radiation produces temperature alterations in facial skin. We hypothesized that the radiation-induced heat was transduced by warmth-sensing trigeminal neurons, as evidenced by changes in cognitive processing of the afferent signals. Ten human volunteers were exposed on the right side of the face to 1 GHz radiation in the absence of acoustic, tactile, and low-frequency electromagnetic stimuli produced by cellphones. Cognitive processing manifested in the electroencephalogram (EEG) was quantitated by analysis of brain recurrence (a nonlinear technique). The theoretical temperature sensitivity of warmth-sensing neurons was estimated by comparing changes in membrane voltage expected as a result of heat transduction with membrane–voltage variance caused by thermal noise. Each participant underwent sixty 12-s trials. The recurrence variable r (“percent recurrence”) was computed second by second for the ∆ band of EEGs from two bilaterally symmetric derivations (decussated and nondecussated). Percent recurrence during radiation exposure (first 4 s of each trial) was reduced in the decussated afferent signal compared with the control (last four seconds of each trial); mean difference, r = 1.1 ± 0.5%, p < 0.005. Mean relative ∆ power did not differ between the exposed and control intervals, as expected. Trigeminal neurons were capable of detecting temperature changes far below skin temperature increases caused by cellphone radiation. Simulated cellphone radiation affected brain electrical activity associated with nonlinear cognitive processing of radiation-induced thermal afferent signals. Radiation standards for cellphones based on a thermal/nonthermal binary distinction do not prevent neurophysiological consequences of cellphone radiation.

Declaration of Interest

The authors report no declarations of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.