70
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The influence of microwave ablation parameters on the positioning of trocar in different cancerous tissues: a numerical study

& ORCID Icon
Pages 125-134 | Received 31 May 2023, Accepted 18 Mar 2024, Published online: 27 Mar 2024
 

ABSTRACT

The present study analyzed the microwave ablation of cancerous tumors located in six major cancer-prone organs and estimated the significance of input power and treatment time parameters in the apt positioning of the trocar into the tissue during microwave ablation. The present study has considered a three-dimensional two-compartment tumour-embedded tissue model. FEA based COMSOL Multiphysics software with inbuilt bioheat transfer, electromagnetic waves, heat transfer in solids and fluids, and laminar flow physics has been used to obtain the numerical results. Based on the mortality rates caused by cancer, the present study has considered six major organs affected by cancer, viz. lung, breast, stomach/gastric, liver, liver (with colon metastasis), and kidney for MWA analysis. The input power (100 W) and ablation times (4 minutes) with apt and inapt positioning of the trocar have been considered to compare the ablation volume of various cancerous tissues. The present study addresses one of the major problems clinicians face, i.e. the proper placement of the trocar due to poor imaging techniques and human error, resulting in incomplete tumor ablation and increased surgical procedures. The highest values of the ablation region have been observed for the liver, colon metastatic liver and breast cancerous tissues compared with other organs at the same operating conditions.

Plain Language Summary

The present study has investigated the application of microwave ablation for cancer treatment in six major organs, specifically emphasizing the evaluation of ablation volume during the procedure. Using COMSOL-Multiphysics software, the study has investigated MWA of tumor embedded organs in the lung, breast, stomach, liver, and kidney. The positioning of the trocar, a crucial element in the treatment process, has been examined to address challenges in effectively ablating tumors.

From the results, it has been revealed that liver, colon metastatic liver, and breast cancer tissues exhibited the largest areas of ablation volume compared with other organs.Organs like the breast and hepatic glands, characterized by lower heat capacity and density, have shown larger ablation zones. Trocar positioning significantly influenced the stomach, liver, and kidney, where improper placement led to notable increases in ablation volume, posing a risk of unintended damage to healthy tissue.

Further, the study has concluded that precise trocar positioning plays a crucial role in optimizing microwave ablation. This precision has the potential to enhance the effectiveness of cancer treatments while minimizing harm to healthy tissue. The insights gained from this research offer valuable information for clinicians looking to enhance the precision of cancer therapies, ultimately aiming for improved outcomes for patients.

Acknowledgments

The authors would like to acknowledge the Science and Engineering Research Board (SERB), Government of India vide grant number CRG/2020/004448 for providing necessary support and Indian Institute of Technology Ropar for providing essential infrastructure to carry out the present research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The work was supported by the Science and Engineering Research Board [CRG/2020/004448].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.