70
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Optimizing mechanical behavior of middle ear prosthesis using finite element method with material degradation FGM in three functions

ORCID Icon, , , , , & show all
Received 23 Feb 2024, Accepted 29 Apr 2024, Published online: 08 May 2024
 

Abstract

Advancements in technology have revolutionized healthcare, with notable impacts on auditory health. This study introduces a novel approach aimed at optimizing materials for middle ear prostheses to enhance auditory performance. We developed a finite element (FE) model of the ear incorporating a pure titanium TORP prosthesis, validated against experimental data. Subsequently, we applied Functionally Graded Materials (FGM) methodology, utilizing linear, exponential, and logarithmic degradation functions to modify prosthesis materials. Biocompatible materials suitable for auditory prostheses, including Stainless Steel, titanium, and Hydroxyapatite, were investigated. Our findings indicate that combinations such as Stainless Steel with titanium and Hydroxyapatite offer improved outcomes compared to pure titanium and Hydroxyapatite ceramic, in terms of both displacement and stress. Additionally, personalized prostheses tailored to individual patient needs are feasible, underscoring the potential for further advancements in auditory healthcare.

Disclosure statement of funding

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 423.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.