270
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Optimal planning of urban air mobility systems accounting for ground access trips

ORCID Icon, & ORCID Icon
Pages 356-378 | Received 18 Jul 2023, Accepted 21 Jan 2024, Published online: 01 Mar 2024
 

Abstract

The concept of Urban Air Mobility (UAM), an on-demand aviation service using air vehicles for urban short-distance trips, such as electric vertical takeoff and landing aircraft (eVTOL), has recently drawn public attention as one of possible solutions to traffic congestion in metropolitan areas. We present an optimal planning framework for fleet size and vertiport numbers using generalized cost models of UAM trip chains with two different ground access modes for first and last mile trips, including taxis and robotaxis (i.e. autonomous taxis or shared autonomous vehicles). As it is a relatively new and untested mode of transportation, our research aims to provide a decision-making tool for initial UAM system planning and analysis of its economic feasibility, appropriately considering its unique characteristics, such as high free-flow speed, low circuity, needs for ground access, and specific cost factors, such as vertiport and electric vertical takeoff and landing aircraft costs. Through a parametric study, we quantitatively examine the necessary conditions for UAM, with or without ridesharing, to become more economically viable than other ground-only modes. The study confirms that UAM can have potential economic benefits especially in large cities with longer average trip lengths and severe traffic congestion, where the average ground vehicle speed is low.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This work was supported by the KAIST-KU Joint Research Center, KAIST, Korea (N11210040) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A4A1033486).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 153.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.