110
Views
1
CrossRef citations to date
0
Altmetric
Original Investigations

Yeast bioassay for identification of inositol depleting compounds

, , , , , , , & show all
Pages 893-899 | Received 21 Jan 2008, Published online: 08 Dec 2009
 

Abstract

Bipolar affective disorder is a chronic, severe, debilitating illness affecting 1–2% of the population. Valproate, along with lithium and carbamazepine, are the only drugs for which long-term efficacy has been established. However, these drugs are ineffective for, and not well tolerated by, a large number of patients and are also associated with teratogenicity and reproductive defects. Therefore, there is a substantial need to develop more effective anti-bipolar drugs. We have previously shown that valproate, like lithium, decreases intracellular inositol, which supports the inositol depletion hypothesis. We employed inositol depletion in yeast as a screening tool to identify potential new anti-bipolar medications. We show here that hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, ethylhexanoate, and methyloctanoate decrease intracellular inositol levels and increase the expression of INO1, the gene encoding myo-inositol-3-phosphate synthase (MIPS). Similar to valproate, these inositol-depleting carboxylic acids inhibited MIPS indirectly. A correlation was shown between cell growth inhibition and the increase in INO1 expression by the carboxylic acids, factors that were reversed in the presence of inositol. Inositol depletion in yeast may be exploited as an easy and inexpensive screening test for potential new inositol depleting anti-bipolar drugs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 341.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.