208
Views
18
CrossRef citations to date
0
Altmetric
Original Article

A theoretical approach for a weighted assessment of the mutagenic potential of nanomaterials

, &
Pages 964-977 | Received 10 Jun 2017, Accepted 18 Sep 2017, Published online: 18 Oct 2017
 

Abstract

Several approaches have recently been proposed for predicting the potential hazard and risk to human health of engineered nanomaterials (NMs). Here, we present a theoretical approach to assess the mutagenic potential of NMs, which could be incorporated into risk assessment tools. Following the weight of evidence approach recommended for chemicals, we describe criteria for evaluating and weighting existing literature information, based on current knowledge on the relevance and limitations of genotoxicity and mutagenicity assays used in testing NMs. The relevant assays are then categorized according to the genotoxic events detected in three categories: DNA damage, gene mutations and chromosomal damage – the former weighing lower than the two latter ones, since unrepairable alterations have more weight than those depicting primary DNA damage that can still be repaired. Besides, evidence from in vivo tests are given a higher weight than data coming from in vitro tests, because animal studies can more accurately predict secondary genotoxicity. Although studies conducted according to validated protocols have greater weight, studies that do not comply with conventional test guidelines are also considered, trying to make use of all available information for each NM. A threshold of agreement among studies belonging to the same category is required to consider this category positive or negative for mutagenicity. The final outcome is a statement on the mutagenic potential of the nanoform and the uncertainty of this evaluation. Finally, we discuss new methods and possible improvements in current assays that could be incorporated in future guidelines.

Acknowledgements

We would like to thank Dr. Gemma Janer (LEITAT, Spain), Dr. Margriet Park (RIVM, The Netherlands) and Dr. Natalia Ferraz (Uppsala University, Sweden) for their useful comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was partly funded by the European Commission 7th Framework Programme FP7-NMP project GUIDEnano [grant no. 604387].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.