152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A comprehensive proteomics analysis of the response of Pseudomonas aeruginosa to nanoceria cytotoxicity

, , , , , , , & ORCID Icon show all
Pages 20-41 | Received 13 Jul 2022, Accepted 09 Feb 2023, Published online: 02 Mar 2023
 

Abstract

The increased commercial use and spread of nanoceria raises concerns about the risks associated with its effects on living organisms. Although Pseudomonas aeruginosa may be ubiquitous in nature, it is largely found in locations closely linked with human activity. P. aeruginosa san ai was used as a model organism for a deeper understanding of the interaction between biomolecules of the bacteria with this intriguing nanomaterial. A comprehensive proteomics approach along with analysis of altered respiration and production of targeted/specific secondary metabolites was conducted to study the response of P. aeruginosa san ai to nanoceria. Quantitative proteomics found that proteins associated with redox homeostasis, biosynthesis of amino acids, and lipid catabolism were upregulated. Proteins from outer cellular structures were downregulated, including transporters responsible for peptides, sugars, amino acids and polyamines, and the crucial TolB protein of the Tol-Pal system, required for the structural formation of the outer membrane layer. In accordance with the altered redox homeostasis proteins, an increased amount of pyocyanin, a key redox shuttle, and the upregulation of the siderophore, pyoverdine, responsible for iron homeostasis, were found. Production of extracellular molecules, e.g. pyocyanin, pyoverdine, exopolysaccharides, lipase, and alkaline protease, was significantly increased in P. aeruginosa san ai exposed to nanoceria. Overall, nanoceria at sublethal concentrations induces profound metabolic changes in P. aeruginosa san ai and provokes increased secretion of extracellular virulence factors, revealing the powerful influence this nanomaterial has on the vital functions of the microorganism.

Acknowledgements

The authors are grateful to Dr. Branka Lončarević for the assistance with respiration experiments.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The research data associated with the paper is available on the link: https://www.ebi.ac.uk/pride/, project accession: PXD039899.

Additional information

Funding

This study was supported by the Ministry of Education and Science of the Republic of Serbia (grant no. 200110).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.