829
Views
201
CrossRef citations to date
0
Altmetric
Original

Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity

, , , , &
Pages 118-129 | Published online: 10 Jul 2009
 

Abstract

Nanoparticles agglomerate and clump in solution, making it difficult to accurately deliver them for in vivo or in vitro experiments. Thus, experiments were conducted to determine the best method to suspend nanosized particles. Ultrafine and fine carbon black and titanium dioxide were suspended in phosphate buffered saline (PBS), rat and mouse bronchoalveolar lavage fluid (BALF), and PBS containing dipalmitoyl phosphatidylcholine (DPPC) and/or mouse serum albumin. To assess and compare how these various suspension media dispersed the nanoparticles, images were taken using light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results of this study show that PBS is not a satisfactory medium to prepare nanoparticle suspensions. However, BALF was an excellent media in which to suspend nanoparticles. The use of PBS containing protein or DPPC alone, in concentrations found in BALF, did not result in satisfactory particle dispersion. However, PBS-containing protein plus DPPC was satisfactory, although less effective than BALF.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.