1,432
Views
89
CrossRef citations to date
0
Altmetric
Original Articles

Customised titanium implant fabricated in additive manufacturing for craniomaxillofacial surgery

This paper discusses the design and fabrication of a metallic implant for the reconstruction of a large cranial defect

, , , , , , & show all
Pages 115-125 | Received 10 Feb 2014, Accepted 02 Mar 2014, Published online: 22 Apr 2014
 

Abstract

Customised implants manufacture has always presented difficulties which result in high cost and complex fabrication, mainly due to patients' anatomical differences. The solution has been to produce prostheses with different sizes and use the one that best suits each patient. Additive manufacturing (AM) as a technology from engineering has been providing several advancements in the medical field, particularly as far as fabrication of implants is concerned. The use of additive manufacturing in medicine has added, in an era of development of so many new technologies, the possibility of performing the surgical planning and simulation by using a three-dimensional (3D) physical model, very faithful to the patient's anatomy. AM is a technology that enables the production of models and implants directly from the 3D virtual model (obtained by a Computer-Aided Design (CAD) system, computed tomography or magnetic resonance) facilitating surgical procedures and reducing risks. Furthermore, additive manufacturing has been used to produce implants especially designed for a particular patient, with sizes, shapes and mechanical properties optimised, for areas of medicine such as craniomaxillofacial surgery. This work presents how AM technologies were applied to design and fabricate a biomodel and customised implant for the surgical reconstruction of a large cranial defect. A series of computed tomography data was obtained and software was used to extract the cranial geometry. The protocol presented was used for creation of an anatomic biomodel of the bone defect for the surgical planning and, finally, the design and manufacture of the patient-specific implant.

Acknowledgements

The authors wish to acknowledge the financial support provided by the Scientific Research Foundation for the State of São Paulo (FAPESP - Process 2008/57860-3 and 2010/05321-1) and National Council for Scientific and Technological Development (CNPq – Process 573661/2008-1).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.