416
Views
55
CrossRef citations to date
0
Altmetric
Original

Role of zinc in ALS

&
Pages 131-143 | Received 15 Feb 2006, Accepted 30 Jan 2007, Published online: 10 Jul 2009
 

Abstract

The causes of amyotrophic lateral sclerosis (ALS) are poorly understood. A small proportion, about 2%, is associated with a mutation in the superoxide dismutase (SOD1) gene, and mice expressing this mutant gene exhibit a progressive, ALS‐like neurodegenerative disease. Studies of these animals, as well as of human post mortem tissue, reveal the presence of multiple pathological processes, including oxidative stress, glutamate excitotoxicity, neuroinflammation, mitochondrial degeneration, alterations in neurofilaments and neurotubules, mitochondrial damage, aggregation of proteins, abnormalities in growth factors, and apoptosis. We propose that alterations in the disposition of zinc ions may be important in the initiation and development of ALS. SOD1 binds zinc, and many of the mutant forms of this enzyme associated with ALS show altered zinc binding. Alterations in the expression of metallothioneins (MTs), which regulate cellular levels of zinc, have been reported in mutant SOD1 mice, and deletion of MTs in these animals accelerates disease progression. Zinc plays a key role in all the pathological processes associated with ALS. Our zinc hypothesis also may help explain evidence for environmental factors in some cases of ALS, such as in the Chamorro tribe in Guam and in the Gulf War.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 478.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.