4,114
Views
48
CrossRef citations to date
0
Altmetric
Review Article

Review of bioactive compounds from root barks of Morus plants (Sang-Bai-Pi) and their pharmacological effects

, , , , & | (Reviewing Editor) show all
Article: 1212320 | Received 01 Jun 2016, Accepted 09 Jun 2016, Published online: 08 Aug 2016

Abstract

Morus, a plant genus from the family of Moraceae, most plants of which are used as traditional medicines in Asian counties. The root barks of Morus plants are normally called as Sang-Bai-Pi (SBP) in Chinese and used for the treatment of inflammatory and respiratory diseases. Decades of research on phytochemistry of SBP have led to the identification of various compounds, such as Diels–Alder-type adducts, flavonoids, benzofurans, stilbenes, polyhydroxylated alkaloids, etc. These compounds have showed a wide range of bioactive features including anti-inflammatory, anti-oxidative, anti-microbic, etc. This review focus on the bioactive compounds and their pharmacological effects of SBP which will help us fully understand the effective substances of SBP, and pave our way to further explore medicinal uses of SBP and comprehensive utilization of Morus species.

Public Interest Statement

Root barks of Morus plants are usually called Sang-Bai-Pi (Mori Cortex). It has been recorded in Chinese Pharmacopoeia and widely applied in traditional Chinese medicine since 500 B. C. for the treatment of lung heat, cough, edema, oliguria, etc. Decades of research on phytochemistry of Sang-Bai-Pi (SBP) have led to the identification of various compounds, which showed a wide range of biological properties. The current review is intended to focus on the bioactive compounds of SBP and their pharmacological effects from 1976 to 2015. This paper will help us fully understand the effective substances of SBP, and pave our way to further explore medicinal uses of SBP and comprehensive utilization of Morus plants.

1. Introduction

Morus Linn, a plant genus from family Moraceae, consists of 10–16 species recognized by botanists including Morus alba L., Morus nigra L., Morus cathayana Hemsl., Morus wittiorum Hand.-Mazz., Morus mongolica (Bur.) Schneid., Morus australis Poir., etc. (Datwyler & Weiblen, Citation2004). M. alba, a perennial herb, is the dominant specie among the genus Morus. It is distributed throughout Asia, Africa, Europe and South and North America, and found in wide range of areas (Zafar et al., Citation2013). The main use of M. alba is as the feed for silk worms, and it is also appreciated as medicines, fruits, vegetables, animal feed, and landscaping (Kumar & Chauhan, Citation2008). In Asian countries, M. alba plays a key role in agriculture and traditional medicine. Besides its uses in agriculture, different parts of M. alba (i.e. fruits, leaves, twigs, and root barks) with abundant resources are commonly used as traditional medicines.

Root barks of M. alba (Sang-Bai-Pi or Mori Cortex) have been recorded in Chinese Pharmacopoeia and widely applied in traditional Chinese medicine since 500 BC for the treatment of lung heat, cough, edema, and oliguria (Pharmacopoeia Committee of P. R. China., Citation2010). In fact, original plants of ancient Chinese Sang-Bai-Pi (SBP) originated from more than one species of Morus by textual research. Thus, SBP include the root barks of most Morus plants in China (Yang & Wan, Citation2008). There are several reviews on the chemical and pharmacological advances of species in the genus Morus (Zafar et al., Citation2013). However, no detailed reports have been made on SBP of what bioactive compounds it contained and what are their pharmacological effects. Decades of research on phytochemistry of SBP have led to the identification of various compounds, which showed a wide range of biological properties. These studies prompted us to compile the progress. The current review is intended to focus on the bioactive compounds of SBP and their pharmacological effects from 1976 to 2015. There over 110 compounds, mostly Diels–Alder-type adducts, flavonoids, 2-Arylbenzofurans, and stilbenes, with anti-inflammatory, anti-oxidative, anti-microbic, anti-diabetic, anti-tumor, and other pharmacological effects are summarized in this paper. This will help us fully understand the effective substances of SBP, and pave our way to further explore medicinal uses of SBP and comprehensive utilization of Morus plants.

2. Ethnomedicinal and traditional uses

The root barks of Morus plants are called SBP in Chinese and Sōhakuhi in Japanese (Figure ). In China, SBP was first recorded in Shennong’s Herbal—one of the world’s earliest pharmacopoeia. It is suggested that the roots of Morus plants are collected between late autumn and early spring. Brown layer is removed from fresh roots by copper knife without discarding the surface juice, then the white root barks are dried or fried with honey to make SBP. It is slightly sweet and contains lots of fiber, and much powder appears when it is torn open. SBP of good quality is usually white, thick, and flexible (Chinese Herbalism Editorial Board, Citation1999). SBP is used as dietary Chinese herbs (Yanze, Zhimin, & Junzeng, Citation2015), and in traditional Chinese medicine (TCM), it has been used in doses 9–15 g by decocting method for the treatment of cough, yellow sputum, bronchitis, xerophthalmia, nephritis, pulmonary diseases, incised wound, and so on (Chinese Herbalism Editorial Board, Citation1999; Li & Xu, Citation2012; Ma & Cai, Citation2013; Zhao, Yan, & Xiong, Citation2003).

Figure 1. Commercially available Sang-Bai-Pi (without removal of brown layer).

Figure 1. Commercially available Sang-Bai-Pi (without removal of brown layer).

3. Bioactive compounds

3.1. Diels–Alder-type adducts

Diels–Alder-type adducts, which formed by a Diels–Alder reaction between the α, β-olefinic moiety of a chalcone and an isoprene moiety, are the most representative compounds in the genus Morus. Nearly 90 Diels–Alder-type adducts have been isolated from Morus plants so far (Yang, Tan, Chen, & Kang, Citation2014). We summarized and updated the structures of some bioactive Diels–Alder-type adducts [1–38] from SBP are shown in Figure .

Figure 2. Bioactive Diels–Alder-type adducts from Sang-Bai-Pi.

3.2. Flavonoids

The genus Morus is a rich source of flavonoids, and most flavonoids are substituted by prenyl and geranyl groups (Yang et al., Citation2014). Diverse flavonoids are resulted by different positions of substituents or cyclization. We summarized and updated the structures; some bioactive flavonoids [39–73] from SBP are shown in Figure .

Figure 3. Bioactive flavonoids from Sang-Bai-Pi.

Figure 3. Bioactive flavonoids from Sang-Bai-Pi.

3.3. 2-Arylbenzofurans and stilbenes

Morus plants are also rich sources of 2-arylbenzofurans and stilbenes, among which, 2-arylbenzofurans are commonly substituted by prenyl and geranyl groups. Diverse 2-arylbenzofurans are resulted by different positions of substituents or cyclization (Yang et al., Citation2014). We summarized and updated the structures some bioactive 2-arylbenzofurans [74–101] and stilbenes [102–106] from SBP are shown in Figure .

Figure 4. Bioactive 2-arylbenzofurans and stilbenes from Sang-Bai-Pi.

Figure 4. Bioactive 2-arylbenzofurans and stilbenes from Sang-Bai-Pi.

3.4. Polyhydroxylated alkaloids

Polyhydroxylated alkaloids (alkaloidal iminosugars) are considered as analogs of saccharides in which the ring oxygen is replaced by nitrogen, and they are considered to have therapeutic potentials (Watson, Fleet, Asano, Molyneux, & Nash, Citation2001). The genus Morus has attracted much attention for its polyhydroxylated alkaloids, especially the principal α-glycosidase inhibitor—1-deoxyjirimycin (1-DNJ) [111] (Zhang, Li, et al., Citation2013). SBP contains 1-DNJ with high content and the structure is shown in Figure .

Figure 5. Other kinds of bioactive compounds from Sang-Bai-Pi.

Figure 5. Other kinds of bioactive compounds from Sang-Bai-Pi.

3.5. Other bioactive compounds

Triterpenoids [107–109] are seldom found in Morus plants. To the best of our knowledge, not more than 10 triterpenoids have been identified from SBP up to date. Besides the compounds motioned above, there are also other types of bioactive compounds [110, 112–117] isolated from SBP (Figure ).

4. Pharmacological effects

4.1. Anti-inflammatory effects

Kimura, Okuda, Nomura, Fukai, & Arichi (Citation1986a, Citation1986b) firstly reported the inhibitory effects of SBP on arachidonate metabolism in rat platelets. Extracts of SBP showed inhibitory effects on cyclooxygenase (COX) isoenzymes (Rollinger et al., Citation2005). Total flavonoids of SBP (400 mg/kg) could obviously inhibit the xylene-induced ear swelling and the capillary permeability resulted from inflammation by acetic acid (Feng, Xie, Lin, Zhao, & Zhou, Citation2013). Studies reported that SBP extracts suppressed the production of nitric oxide (NO), prostagland in E2 (PGE2), and mRNA expression of COX-2 in RAW 264.7 cells (Seo, Lim, Jeong, Ha, & Shin, Citation2013), and inhibited nuclear factor kappa B (NF-κB) activation (Eo et al., Citation2014).

A large number of anti-inflammatory compounds were found from SBP. Morusin [46], oxydihydromorusin (morusinol) [48], kuwanon C [39], mulberrofuran A [79], kuwanon G (moracenin B or albanin F) [1], kuwanon H (moracenin A or albanin G) [2], sanggenon D [10], and mulberrofurans G (albanol A) [29], J [31], Q [32] were found to affect on arachidonate metabolism in rat platelets (Kimura et al., Citation1986a, Citation1986b). Morusin [46], kuwanon C [39], sanggenons B [24], C [7], D [10], E [11], O [8] inhibited COX activity (Cheon et al., Citation2000; Chi et al., Citation2001; Rollinger et al., Citation2005). Oxyresveratrol [102] inhibited the LPS-stimulated increase of inducible nitric oxide synthase (iNOS) expression (Chung et al., Citation2003). Mornigrol D [94] and norartocarpetin [41] showed inhibition on release of β-glucuronidase (Wang, Yang, Liu, & Chen, Citation2010). Moracins C [74], D [87], O [89], P [90], R [78], artoindonesianin O [84], alabafuran A [85], mulberrofurans J [31], L [81], Y [83], kuwanons A [53], C [39], E [55], T [40], sanggenon F [65], sanggenol L [69] and morusin [46] showed inhibitory effects on NO production (Qin et al., Citation2015; Yang, Matsuzaki, Takamatsu, & Kitanaka, Citation2011). Kuwanon J 2,4,10’’-trimethyl ether [19], kuwanon R [20] inhibited NF-κB activity (Phung et al., Citation2012). Cudraflavone B [51] inhibited Tumor Necrosis Factor (TNF-α) gene expression and secretion by blocking the translocation of NF-κB (Hošek et al. Citation2011; Kollar et al., Citation2013). Kuwanon E [55], kuwanon G [1] and norartocarpanone [58] significantly inhibited IL-6 production in lung epithelial cells (A549) and NO production in lung macrophages (MH-S) (Lim, Jin, Woo, Lee, & Kim, Citation2013). Caffeic acid [116] and p-coumaric acid [117] inhibited the production of PGE2 and mRNA expression of COX-2 in RAW 264.7 cells (Seo et al., Citation2013). Moracin C [74], mulberrofuran Y [83], mulberrofuran H [30], kuwanons C [39], E [55], oxydihydromorusin [48], soroceal [22], and sanggenons E [11], H [66] inhibited the secretion of TNF-α, IL-1β and NF-κB nuclear translocation in LPS-stimulated macrophages (Zelová et al., Citation2014).

Hot-water extract of SBP inhibited anti-chicken gamma globulin IgE-induced mast cell activation and histamine release which is important to allergenic reactions (Chai, Lee, Han, Kim, & Song, Citation2005). The anti-allergenic activities of SBP may be related to the regulation of NF-κB and inhibition of Th2 cytokines IL-5 and IL-13 (Lee, Kim, & Kil, Citation2013). Hot-water extract also exerted antiasthmatic effects via enhancement of CD4+CD25+Foxp3+ regulatory T cells and inhibition of Th2 cytokines (Kim, Lee, Jeong, et al., Citation2011). While ethanol extract of SBP inhibited IL-6 production and bronchitis-like symptoms of lipopolysaccharide (LPS)-induced airway inflammation in mice (Lim et al., Citation2013). Moracin M [77] was found to be an effective phosphodiesterase-4 inhibitor (PDE4) (Chen, Zhao, et al., Citation2012).

4.2. Antioxidative effects

SBP extract showed strong free radical scavenging effect and inhibitory effect of xanthine oxidase and lipid peroxidation (Choi et al., Citation2002). Water extract of SBP showed antioxidant effects in assays FeCl2–ascorbic acid-induced lipid peroxidation in rats (Jin, Sa, Shim, Rhee, & Wang, Citation2005), and methanolic extract showed antioxidant activity through ameliorating the level of blood glutathione content, superoxide dismutase, and catalase activities (Singab, Ayoub, Ali, & Mostafa, Citation2010).

Many antioxidant compounds were detected in SBP. Australone B [73] and morusin [46] showed inhibitory effects on superoxide anion formation from rat neutrophils stimulated with phorbol myristate acetate (PMA) (Ko, Wang, Lin, Wang, & Lin, Citation1999). Moracins C [74], N [76], chalcomoracin [35] could scavenge superoxide anion and inhibit lipid peroxidation (Sharma et al., Citation2001). Oxyresveratrol [102] and 5,7-dihydroxycoumarin 7-Me ether [114] showed superoxide scavenging effects (Oh et al., Citation2002). Mulberroside A [103] showed liver protective action against CCl4-induced hepatotoxicity (Jin, Kim, Heo, Han, & Wang, Citation2007; Jin et al., Citation2006). Moracins C [74] and M [77] inhibited malondialdehyde produced during microsomal lipid peroxidation induced by ferrouscysteine (Tan, Liu, & Chen, Citation2008). Albanol B [34], moracin M [77], 2-methylene-3-methoxy-2,5-dihydrofuran-4-O-β-D-glucopyranoside [110], mulberrofuran G [29] showed potential activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (Cui, Wang, Liu, & Chen, Citation2008; Fu, Lei, Cai, Zhou, & Ruan, Citation2010). Mornigrol D [94] and albafuran C [38] inhibited release of β-glucuronidase from rat polymorphonuclear leucocytes induced by platelet activating factor (Wang et al., Citation2010). Oxyresveratrol [102], moracin M [77], morusin [46] showed moderate DPPH radical scavenging activity (Mazimba, Majinda, & Motlhanka, Citation2011). Besides, SBP contained many phenolic compounds (Diels–Alder-type adducts, flavonoids, 2-arylbenzofuran, and stilbenes), which were highly correlated with antioxidant potentials of SBP (Chon et al., Citation2009; Cui, Li, & Jiang, Citation2011; Khan et al., Citation2013).

4.3. Antimicrobic effects

Nomura (Nomura, Fukai, Uno, & Arai, Citation1978) firstly tested antimicrobial activity of SBP. The methanolic extract of SBP has potent antimicrobic activities (Park, Lee, & Yang, Citation1990; Rollinger et al., Citation2006), and extracts of SPB also have inhibitory activity against respiratory viruses (Zhang, Li, Ye, Zhang, & Li, Citation2005).

Bioassay-guided and phytochemical research resulted in the isolation of many antimicrobial and parasitic compounds. Mulberrofuran A [79] showed antimicrobic activity against Staphylococcus aureus and Fusarium roseum (Nomura et al., Citation1978). Ethyl β-resorcylate (ethyl 2,4-dihydroxybenzoate) [115] and 5,7-dihydroxychromone [113] exhibited antimicrobial activities against plant pathogenic fungi and bacteria (Uno, Isogai, Suzuki, & Shirata, Citation1981). 1-DNJ [111] may be effective in the treatment of AIDS infection (Sergio, Citation1989). Morusin [46], morusin 4’-glucoside [47], and kuwanon H [2] showed positive activities on HIV (Luo, Nemec, & Ning, Citation1995). Kuwanon G [1] and sanggenon C [7] inhibited the growth of oral pathogenic bacteria such as Streptococcus mutans, Streptococcus sobrinus, Streptococcus sanguis, and Porphyromonas gingivalis (Park, You, Lee, Baek, & Hwang, Citation2003; Park et al., Citation1990). Leachianone G [70] showed potent antiviral activity against herpes simplex type 1 virus (HSV-1) (Du et al., Citation2003). Kuwanon C [39], mulberrofuran G [29], albanol B [34], morusin [46], sanggenons B [24], D [10] were effective to pathogenic bacteria and fungi include Candida albicans, Saccharomyces cerevisiae, Salmonella typhimurium, Staphylococcus epidermis, and S. aureus (Sohn, Son, Kwon, Kwon, & Kang, Citation2004). Both 2’,4’,5-trihydroxy-3-(γ,γ,γ-hydroxydimethyl)propyl-2’’,2’’- dimethylpyrano(5’’,6’’:6,7)-flavone [52] and 7-methoxy-5,4’-dihydroxyflavanonol [59] had significant antivirus effects against influenza viruses, respiratory syncytial viruses, and adenoviruses (Zhang et al., Citation2005). Kuwanon L [13], sanggenons B [24], C [7], D [10], E [11], G [15], O [8] revealed inhibition against Venturia inaequalis (Rollinger et al., Citation2006). Mulberroside C [95], moracin P [90], moracin O [89], moracin M [77] showed significant inhibitory activities against hepatitis C virus (Lee et al., Citation2007). Moracins C [74], Q [91], M [77] inhibited the growth of S. aureus, Streptococcus faecalis, Bacillus cereus, Escherichia coli, Klebsiella pneumoniae, Shigella dysenteriae, Pseudomonas aeruginosa, Salmonella typhi, Citrobacter freundii, Candida albicans, Microsporum audouinii (Kuete et al., Citation2009). Oxyresveratrol [102], moracin M [77], morusin [46], and kuwanon C [39] showed inhibitory activities against S. aureus, Bacillus subtilis, Micrococus flavus, S. faecalis, Salmonella abony, P. aeruginosa (Mazimba et al., Citation2011). Mulberrofuran G [29] showed moderate inhibitory activity on hepatitis B virus DNA replication (Geng et al., Citation2012). Kuwanons G [1], O [14] were effective to control Ichthyophthirius multifiliis (Liang et al., Citation2015).

4.4. Antidiabetic effects

Aqueous extract of SBP significantly lowered the elevated blood glucose level with improvement in the serum lipid profile of streptozotocin (STZ)-induced diabetic rats (Ali, Ali, Mir, & Ali, Citation2011). Ethanolic extract of SBP reduced the amount of the glucose, increased insulin production, protected pancreatic β cells from degeneration, diminished lipid peroxidation, inhibited low density lipoprotein (LDL) atherogenic modification and lipid peroxides formation, and increased the expression of adipogenic maker proteins, such as peroxisome proliferator-activated receptors γ (PPARγ), adipocyte-specific fatty acid binding protein 4 (aP2), and GLUT4 (glucose transporter 4) (El-Beshbishy, Singab, Sinkkonen, & Pihlaja, Citation2006; Oh, Choi, & Yun, Citation2011; Singab, El-Beshbishy, Yonekawa, Nomura, & Fukai, Citation2005).

Much of anti-hyperglycemic activities attributed to some functional components such as moran A (Hikino, Mizuno, Oshima, & Konno, Citation1985), moran 20 K (Kim et al., Citation1999), morusin [46], cyclomorusin [49], neocyclomorusin [50], kuwanon E [55], moracin M [77], betulinic acid [109] (Singab et al., Citation2005), steppogenin-4’-O-β-D-glucoside [60], mullberroside A[103] (Heo, Jin, Jung, & Wang, Citation2007; Zhang, Chen, et al., Citation2009). Inhibitors for protein tyrosine phosphatase 1B (PTP1B) include sanggenons C [7], G [15], mulberrofuran C [27], kuwanon L [13] (Cui et al., Citation2006), albafuran A [85], mulberrofuran W [82], mulberrofuran D [80], kuwanon J [18], kuwanon R [20], kuwanon V [21] (Hoang et al., Citation2009), albafurans A [85], B [86], mulberrofuran A [79], and moracin I [75], 4’-(6,6-dimethyl-5-hydroxyl-2-methylenecyclohexylmethyl)-3’,5’,6-trihydroxy-2-arylbenzofuran[92], 2’-[[3-methyl-3-(4-methyl-3-penten-1-yl)-2-oxiranyl]methyl]-3’,5’,6-trihydroxy-2-arylbenzofuran [97] (Zhang, Luo, Wan, Zhou, & Kong, Citation2014). α-glucosidase inhibitors include 4’-(6,6-dimethyl-5-hydroxyl-2-methylenecyclohexylmethyl)-3’,5’,6-trihydroxy-2-arylbenzofuran [92], 2’-(1,3,3-trimethyl-7-oxabicyclo[2.2.1]hept-2-ylmethyl)-3’-methoxy-5’,6-dihydroxy-2-arylbenzofuran [93], 2’-(6-hydroxy-3,7-dimethyl-2,7-octadien-1-yl)-3’-methoxy-5’,6-dihydroxy-2-arylbenzofuran [96], 4’-(6-hydroxy-3,7-di-methyl-2,7-octadien-1-yl)-3’,5’,6-trihydroxy-2-arylbenzofuan [99], 2’-(6,7-dihydroxy-3,7-dimethyl-2-octen-1-yl)-3’,5’,6-trihydroxy-2-arylbenzofuan [98], 4’-(6,7-dihydroxy-3,7-dimethyl-2-octen-1-yl)-3’,5’,6-trihydroxy-2-arylbenzofuan[100], 2’-(6,7-dihydroxy-3,7-dimethyl-2-octen-1-yl)-3’-methoxy-5’,6-dihydroxy-2-arylbenzofuran [101], albafuran B [86], moracin I [75], and 1-DNJ [111] (Zhang, Li, et al., Citation2013; Zhang et al., Citation2014).

Anti-hyperlipidemic compounds include mulberrofuran G [29], albanol B [34], 5,7,2’-trihydroxyflavanone-4’-O-β-D-glucoside [57] (El-Beshbishy et al., Citation2006), kuwanons A [53], C [39], T [40], morusin [46], sanggenon F [65], uvaol [108], betulinic acid [109] (Yang et al., Citation2011), mulberroside A [103], and oxyresveratrol [102] (Jo, Kim, & Lim, Citation2014).

Nomura (Yamatake, Shibata, & Nagai, Citation1976) reported the anti-hypertensive effects of SBP in Japanese, and it was found that both the water-soluble and butanol-soluble fractions of SBP had hypotensive activity in rodents and dogs. Anti-hypertensive compounds include kuwanon G [1] (Nomura & Fukai, Citation1980; Oshima, Konno, Hikino, & Matsushita, Citation1980a), kuwanon H [2] (Nomura, Fukai, & Narita, Citation1980; Oshima, Konno, Hikino, & Matsushita, Citation1980c), moracenins C [5], D [6] (Oshima, Konno, Hikino, & Matsushita, Citation1980b) (Oshima, Konno, & Hikino, Citation1981), sanggenon C [7] (Nomura, Fukai, Hano, & Uzawa,Citation1981a), mulberrofuran C [27] (Nomura, Fukai, Matsumoto, Fukushima, & Momose, Citation1981b), sanggenon D [10] (Nomura, Fukai, Hano, & Uzawa, Citation1982), kuwanon M [3] (Nomura, Fukai, Hano, & Ikuta, Citation1983), mulberrofurans F [28], G [29] (Fukai et al., Citation1984).

4.5. Antitumor effects

Extract of SBP exhibited cytotoxic activity on human leukemia cells (K-562, B380) and mouse melanoma cells (B16) by inhibiting microtubule assembly (Nam et al., Citation2002), and induced cell growth arrest and apoptosis in human colorectal cancer cells (SW480) by activating ATF3 expression and down-regulated cyclin D1 level (Eo et al., Citation2014). Besides, SBP may be useful for treating multidrug-resistant cancer cells (Choi et al., Citation2013).

Compounds from SBP exhibited cytotoxic activities against various cancer cell lines. Cytotoxic compounds include sanggenol M [17], sanggenon C [7] (Shi et al., Citation2001), 7,2’,4’,6’-tetrahydoroxy-6-geranylflavanone [112] (Kofujita, Yaguchi, Doi, & Suzuki, Citation2004), australisines A [4], B [36], C [37], mulberrofuran G [29], mongolicin C [33], chalcomoracin [35] (Zhang, Tang, Chen, & Yu, Citation2007), moracin C [74], morusin [46] (Ferlinahayati et al., Citation2007; Mei, Li, Zhong, Zuo, & Dai, Citation2011), steppogenin-7,4’-di-O-β-D-glucoside [62] (Zhang, Wang, et al., Citation2009), CMA-b1–1 (RG-I type pectic polysaccharide) (Zhang, Liao, et al., Citation2013), cyclomorusin [49], cyclomulberrin [54] (Dat et al., Citation2010), soroceal B [23], mongolicin, sanggenol L [69], licoflavone C [42], oxydihydromorusin [48], 3’-geranyl-3-prenyl-2’,4’,5,7-tetrahydroxyflavone [43], etc. (Qin et al., Citation2015).

Lots of compounds with different antitumor mechanisms have been isolated from SBP. Morusin [46] inhibited induction of ornithine decarboxylase by teleocidin in mouse skin (Yoshizawa et al., Citation1989). Kuwanons G [1], H [2] were found to be specific antagonists for gastrin-releasing peptide (GRP)-preferring receptor (Mihara et al., Citation1995). Oxyresveratrol [102] and kuwanon Y [26] were shown to inhibit protein kinase C (PKC) (Hu, Chen, Yao, & Xu, Citation1996). Cathayanons A [12], B [9] exhibited potent activities on the inhibition of HL-60 cell adhesion to Bovine Arterial Endothalium cells (BAEC) (Shen & Lin, Citation2001). Sanggenon C [7] inhibited tumor cellular proteasomal activity and cell viability (Huang et al., Citation2012). Mulberrofurans G [29], H [30], D [80], W [82], moracins O [89], P [90], Q [91], sanggenon O [8], albafuran A [85], and kuwanon J [18] were found to inhibit Hypoxia-inducible factor-1 (HIF-1) accumulation (Dat et al., Citation2009). Mulberrofuran G [29] induced apoptotic cell death via both the cell death receptor pathway and the mitochondrial pathway (Kikuchi et al., Citation2010). Cudraflavone B [51], kuwanon E [55] and 4’-O-methylkuwanon E (kuwanon U) [56] exerted anti-proliferative and anti-inflammatory activities (Kollar et al., Citation2013).

4.6. Other pharmacological effects

There are also other bioactive compounds from SBP. For example, cyclomorusin [49] (Lin, Shieh, Ko, & Teng, Citation1993), morusin [46], kuwanon C [39] (Ko, Yu, Ko, Teng, & Lin, Citation1997), australone B [73] (Ko et al., Citation1999) have anti-platelet effects. Morusin [46] has anti-nociceptive effect (De et al., Citation2000). Mulberroside A [103] showed liver protective and P-Glycoprotein inhibitory effects (Jin et al., Citation2006; Li et al., Citation2014). Sanggenons C [7], D [10], G [15] and morusin [46] are positive GABAA receptor modulators (Gupta, Dua, Kazmi, & Anwar, Citation2014; Kim, Baburin, et al., Citation2012). Kuwanons C [39], E [55], U [56], 5’-geranyl-4’-methoxy-5,7,2’-trihydroxyflavone [44], morusin [46], oxydihydromorusin [48], cyclomorusin [49], and neocyclomorusin [50] exhibited cholinesterase inhibitory effects (Kim, Lee, Kim, et al., Citation2011). Sanggenol Q [64], kuwanon T [40], sanggenon N [68], mulberrofurans C [27], G [29], cudraflavone B [51], and oxyresveratrol [102] have hepatoprotective effects (Jung et al., Citation2015; Oh et al., Citation2002). Moracins C [74], M [77], oxyresveratrol [102] (He et al., Citation2014), cyclomulberrin [54], neocyclomorusin [50], sanggenon I [67], morusin [46], kuwanons E [55], U [56] (Lee et al., Citation2012), morusalbanol A [25], sanggenols A [63], Q [64], mulberrofuran G [29], mulberrofuran C [27], moracin E [88] (Chen, Ding, et al., Citation2012; Jung et al., Citation2015), mulberroside A [103] (Wang et al., Citation2014), and kuwanon V [21] (Kong et al., Citation2015) have neuroprotective effects. While, kuwanon C [39], sanggenon D [10] (Lee et al., Citation2004), α-amyrin acetate [107], betulinic acid [109] (Pianwijanpong, Pongpan, Suntornsuk, & Luanratana, Citation2007), 5’-geranyl-5,7,2’,4’-tetrahydroxyflavone [45], steppogenin-7-O-β-D-glucoside [61], 2,4,2’,4’-tetrahydroxychalcone [71], moracin N [76], kuwanon H [2], mulberrofuran G [29], morachalcone A [72], oxyresveratrol-2-O-β-D- glucopyranoside [104], oxyresveratrol-3’-O-β-D-glucopyranoside [106] (Zheng et al., Citation2010), mulberroside A [103], oxyresveratrol-3-O-β- glucoside [105], oxyresveratrol [102] (Kim et al., Citation2010; Kim, Park, et al., Citation2012; Park, Kim, Hwang, Yoo, & Lim, Citation2011), moracenin D [6], sanggenon T [16], and kuwanon O [14] exhibited tyrosinase inhibitory activities (Zheng, Tan, & Wang, Citation2012).

5. Conclusion

In TCM, SBP was used to treat inflammatory diseases like incised wound, nephritis, arthritis, swelling, and so on. It is also used to treat respiratory disorders like cough, asthma, yellow sputum, bronchitis, and pulmonary diseases. Pharmacological studies over the past 80 years indicate that SBP have anti-inflammatory, antioxidative, antimicrobic, antidiabetic, antitumor, and other pharmacological effects. The findings that SBP can in vitro or in vivo inhibit inflammatory mediators and inflammations, at least in part, explains the folk use of SBP in diverse inflammatory diseases. While the antimicrobic effects on influenza and respiratory viruses, in part, proves the use of SBP in respiratory disorders.

Inflammation and oxidations play important roles in several conditions including asthma, allergy, cancer, bacterial and viral infections, diabetes mellitus, cardiovascular diseases, Alzheimer’s disease, rheumatoid arthritis, bronchitis, osteoarthritis, etc. As a result, SBP extracts and its bioactive compounds with anti-inflammatory and antioxidative effects play positive role on these diseases.

Phytochemical investigation revealed that SBP contains several classes of compounds, such as Diels–Alder-type adducts, flavonoids, 2-arylbenzofuran, stilbenes, polyhydroxylated alkaloids, etc. A variety of bioactive compounds were detected, and they showed effects on inflammatory mediators, free radicals, specific pathogenic microbes (influenza and respiratory viruses) and therapeutic targets (PDE4, PTP1B, α-glucosidase, PPARγ, HIF-1, PKC, GABAA). The main and promising compounds of SBP such as kuwanons G [1], H [2], E [55], morusin [46], moracin M [77], mulberrofuran G [29], sanggenons C [7], D [10], mulberroside A [103], and 1-DNJ [111], showed excellent pharmacological effects.

Funding

This work was supported by Central Public Welfare Research Institutes [grant number ZZ070838]; National Natural Science Foundation of China [grant number 81403088]; Quality Guarantee System of Chinese Herbal Medicines [grant number 201507002]; China Postdoctoral Science Foundation [grant number 2013M541160] for financial supports.

Additional information

Notes on contributors

Li-Hua Yan

The author’s group mainly focus on the quality control of traditional Chinese medicines (TCM), including standards and process control of TCM industry, preparation technology of the chemical controls of TCM, comprehensive evaluation technology standard for TCM, harmful substances removal technology of TCM, and enhancement of the quality control level and ability in industry.

The author’s key research activities are isolation and identification of new compounds from TCM, preparation of the chemical controls of TCM, and discovery of effective substances from TCM.

References

  • Ali, A., Ali, M., Mir, S., & Ali, B. (2011). Phytochemical and biological screening of Morus alba (L) Bark. Planta Medica, 77, 14.
  • Chai, O. H., Lee, M. S., Han, E. H., Kim, H. T., & Song, C. H. (2005). Inhibitory effects of Morus alba on compound 48/80-Induced anaphylactic reactions and anti-chicken gamma Globulin IgE-Mediated mast cell activation. Biological and Pharmaceutical Bulletin, 28, 1852–1858.10.1248/bpb.28.1852
  • Chen, H. D., Ding, Y. Q., Yang, S. P., Li, X. C., Wang, X. J., Zhang, H. Y., ... Ferreira, Daneel (2012). Morusalbanol A, a neuro-protective Diels-Alder adduct with an unprecedented architecture from Morus alba. Tetrahedron, 68, 6054–6058.10.1016/j.tet.2012.05.017
  • Chen, S. K., Zhao, P., Shao, Y. X., Li, Z., Zhang, C. X., Liu, P. Q., ... Hu, X. P. (2012). Moracin M from Morus alba L. is a natural phosphodiesterase-4 inhibitor. Bioorganic & Medicinal Chemistry Letters, 22, 3261–3264.
  • Cheon, B. S., Kim, Y. H., Son, K. S., Chang, H. W., Kang, S. S., & Kim, H. P. (2000). Effects of prenylated flavonoids and biflavonoids on Lipopolysaccharide-Induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Medica, 66, 596–600.10.1055/s-2000-8621
  • Chi, Y. S., Jong, H. G., Son, K. H., Chang, H. W., Kang, S. S., & Kim, H. P. (2001). Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochemical Pharmacology, 62, 1185–1191.10.1016/S0006-2952(01)00773-0
  • Chinese Herbalism Editorial Board (1999). Chinese materia medica. Shanghai: Shanghai Science and Technology Press.
  • Choi, C. W., Kim, S. C., Hwang, S. S., Choi, B. K., Ahn, H. J., Lee, M. Y., ... Kim, S. K. (2002). Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Science, 163, 1161–1168.10.1016/S0168-9452(02)00332-1
  • Choi, Y. K., Cho, S. G., Choi, H. S., Woo, S. M., Yun, Y. J., ... Ko, S. G. (2013). JNK1/2 Activation by an extract from the roots of Morus alba L. Reduces the viability of multidrug-resistant MCF-7/Dox cells by inhibiting YB-1-Dependent MDR1 expression. Evidence-based Complementary and Alternative Medicine, 2013, 741985.
  • Chon, S. U., Kim, Y. M., Park, Y. J., Heo, B. G., Park, Y., & Gorinstein, S. (2009). Antioxidant and antiproliferative effects of methanol extracts from raw and fermented parts of mulberry plant (Morus alba L.). European Food Research and Technology, 230, 231–237.10.1007/s00217-009-1165-2
  • Chung, K. O., Kim, B. Y., Lee, M. H., Kim, Y. R., Chung, H. Y., Park, J. H., & Moon, J. O. (2003). In-vitro and in vivo anti-inflammatory effect of oxyresveratrol from Morus alba L. Journal of Pharmacy and Pharmacology, 55, 1695–1700.10.1211/0022357022313
  • Cui, J., Li, C., & Jiang, Zs. (2011). Antioxidant and analgesia activities of total flavonoids from the root bark of Morus alba. Shipin Kexue (Beijing, China), 32, 281–284.
  • Cui, L., Na, M., Oh, H., Bae, E. Y., Jeong, D. G., Ryu, S. E., ... Ahn, J. S. (2006). Protein tyrosine phosphatase 1B inhibitors from Morus root bark. Bioorganic & Medicinal Chemistry Letters, 16, 1426–1429.
  • Cui, X. Q., Wang, H. Q., Liu, C., & Chen, R. Y. (2008). Study of anti-oxidant phenolic compounds from stem barks of Morus yunanensis. Zhongguo Zhong Yao Za Zhi., 33, 1569–1572.
  • Dat, N. T., Jin, X. J., Lee, K., Hong, Y. S., Kim, Y. H., & Lee, J. J. (2009). Hypoxia-Inducible Factor-1 inhibitory Benzofurans and Chalcone-Derived Diels−Alder Adducts from Morus Species. Journal of Natural Products, 72, 39–43.10.1021/np800491u
  • Dat, N. T., Binh, P. T. X., Quynh, L. T. P., Minh, C. V., Huong, H. T., & Lee, J. J. (2010). Cytotoxic prenylated flavonoids from Morus alba. Fitoterapia, 81, 1224–1227.10.1016/j.fitote.2010.08.006
  • Datwyler, S. L., & Weiblen, G. D. (2004). On the origin of the fig: Phylogenetic relationships of Moraceae from ndhF sequences. American Journal of Botany, 91, 767–777.10.3732/ajb.91.5.767
  • De, S. M. M., Bittar, M., Cechinel-Filho, V., Yunes, R. A., Messana, I., Delle, M. F., & Ferrari, F. (2000). Antinociceptive properties of morusin, a prenylflavonoid isolated from Morus nigra root bark. Zeitschrift für Naturforschung C. A Journal of Biosciences, 55, 256–260.
  • Du, J., He, Z. D., Jiang, R. W., Ye, W. C., Xu, H. X., & But, P. P. H. (2003). Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 62, 1235–1238.10.1016/S0031-9422(02)00753-7
  • El-Beshbishy, H. A., Singab, A. N. B., Sinkkonen, J., & Pihlaja, K. (2006). Hypolipidemic and antioxidant effects of Morus alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life Sciences, 78, 2724–2733.10.1016/j.lfs.2005.10.010
  • Eo, H. J., Park, J. H., Park, G. H., Lee, M. H., Lee, J. R., Koo, J. S., & Jeong, J. B. (2014). Anti-inflammatory and anti-cancer activity of mulberry (Morus alba L.) root bark. BMC Complementary and Alternative Medicine, 14, 200–208.10.1186/1472-6882-14-200
  • Feng, T. T., Xie, T. B., Lin, B., Zhao, Z., & Zhou, Y. (2013). Analgesic and anti-inflammatory effects of total flavonoids in Cortex Mori. Shizhen Guoyi Guoyao, 24, 2580–2582.
  • Ferlinahayati, ., Syah, Y. M., Juliawaty, L. D., Achmad, S. A., Hakim, E. H., Takayama, H., ... Latip, J. (2007). Phenolic constituents from the wood of Morus australis with cytotoxic activity. Zeitschrift für Naturforschung C: A Journal of Biosciences, 63, 35–39.
  • Fu, W., Lei, Y. F., Cai, Y. L., Zhou, D. N., & Ruan, J. L. (2010). A new alkylene dihydrofuran glycoside with antioxidation activity from the root bark of Morus alba L. Chinese Chemical Letters, 21, 821–823.10.1016/j.cclet.2010.02.016
  • Fukai, T., Hano, Y., Hirakura, K., Nomura, T., Uzawa, J., & Fukushima, K. (1984). Structures of mulberrofurans F and G, two natural hypotensive Diels-Alder type adducts from the cultivated mulberry tree (Morus lhou (ser.) Koidz.). Heterocycles, 22, 473–477.
  • Geng, C. A., Ma, Y. B., Zhang, X. M., Yao, S. Y., Xue, D. Q., Zhang, R. P., & Chen, J. J. (2012). Mulberrofuran G and Isomulberrofuran G from Morus alba L.: Anti-hepatitis B virus activity and mass spectrometric fragmentation. Journal of Agricultural and Food Chemistry, 60, 8197–8202.10.1021/jf302639b
  • Gupta, G., Dua, K., Kazmi, I., & Anwar, F. (2014). Anticonvulsant activity of Morusin isolated from Morus alba: Modulation of GABA receptor. Biomedicine & Aging Pathology, 4, 29–32.
  • He, X. X., Chao, X. J., Yang, L., Zhang, C. X., Pi, R. B., Zeng, H. X., ... Lin, Y. Y. (2014). Research on chemical ingredients of heartwood of root of Morus atpropurpurea. Tianran Chanwu Yanjiu Yu Kaifa, 26, 193–196.
  • Heo, S. I., Jin, Y. S., Jung, M. J., & Wang, M. H. (2007). Antidiabetic properties of 2,5-Dihydroxy-4,3’-Di(β-D-Glucopyranosyloxy)-trans-Stilbene from Mulberry (Morus bombycis Koidzumi) root in Streptozotocin-Induced diabetic rats. Journal of Medicinal Food, 10, 602–607.10.1089/jmf.2006.0241
  • Hikino, H., Mizuno, T., Oshima, Y., & Konno, C. (1985). Isolation and hypoglycemic activity of Moran A, a Glycoprotein of Morus alba root barks 1. Planta Medica, 51, 159–160.10.1055/s-2007-969435
  • Hoang, D. M., Ngoc, T. M., Dat, N. T., Ha, D. T., Kim, Y. H., Luong, H. V., ... Bae, K. (2009). Protein tyrosine phosphatase 1B inhibitors isolated from Morus Bombycis. Bioorganic & Medicinal Chemistry Letters, 19, 6759–6761.
  • Hošek, J., Bartos, M., Chudík, S., Dall’Acqua, S., Innocenti, G., Kartal, M., ... Šmejkal, K. (2011). Natural Compound Cudraflavone B Shows Promising Anti-inflammatory Properties in Vitro Journal of Natural Products, 74, 614–619.10.1021/np100638h
  • Hu, C., Chen, Z., Yao, R., & Xu, G. (1996). Inhibition of protein kinase C by stilbene derivatives from Morus alba L. Tianran Chanwu Yanjiu Yu Kaifa., 8, 13–16.
  • Huang, H. B., Liu, N. N., Zhao, K., Zhu, C. C., Lu, X. Y., Li, S. J., …, Liu, J. (2012). Sanggenon C decreases tumor cell viability associated with proteasome inhibition. Frontiers in bioscience (Elite edition), 3, 1315–1325.
  • Jin, Y. S., Sa, J. H., Shim, T. H., Rhee, H. I., & Wang, M. H. (2005). Hepatoprotective and antioxidant effects of Morus bombycis Koidzumi on CCl4-induced liver damage. Biochemical and Biophysical Research Communications, 329, 991–995.10.1016/j.bbrc.2005.02.076
  • Jin, Y. S., Lee, M. J., Han, W., Heo, S. I., Sohn, S. I., & Wang, M. H. (2006). Antioxidant effects and hepatoprotective activity of 2,5-dihydroxy-4,3′-di(β- d -glucopyranosyloxy)- trans -stilbene from Morus bombycis Koidzumi roots on CCl 4 -induced liver damage. Free Radical Research, 40, 986–992.10.1080/10715760600803823
  • Jin, Y. S., Kim, M. K., Heo, S. I., Han, W., & Wang, M. H. (2007). Identification and properties of 2,5-Dihydroxy-4,3′-di(β-d-glucopyranosyloxy)-trans-stilbene fromMorus bombycis Koidzumi roots. Phytotherapy Research, 21, 605–608.10.1002/(ISSN)1099-1573
  • Jo, S. P., Kim, J. K., & Lim, Y. H. (2014). Antihyperlipidemic effects of stilbenoids isolated from Morus alba in rats fed a high-cholesterol diet. Food and Chemical Toxicology, 65, 213–218.10.1016/j.fct.2013.12.040
  • Jung, J. W., Ko, W. M., Park, J. H., Seo, K. H., Oh, E. J., Lee, D. Y., ... Baek, N.-I. (2015). Isoprenylated flavonoids from the root bark of Morus alba and their hepatoprotective and neuroprotective activities. Archives of Pharmacal Research , 38, 2066–2075.10.1007/s12272-015-0613-8
  • Khan, M. A., Rahman, A. A., Islam, S., Khandokhar, P., Parvin, S., Islam, M. B., ... Alam, A. (2013). A comparative study on the antioxidant activity of methanolic extracts from different parts of Morus alba L. (Moraceae). BMC Research Notes, 6, 24.10.1186/1756-0500-6-24
  • Kikuchi, T., Nihei, M., Nagai, H., Fukushi, H., Tabata, K., Suzuki, T., & Akihisa, T. (2010). Albanol A from the root bark of Morus alba L. induces apoptotic cell death in HL60 human leukemia cell line. Chemical & pharmaceutical bulletin, 58, 568–571.
  • Kim, E. S., Park, S. J., Lee, E. J., Kim, B. K., Huh, H., & Lee, B. J. (1999). Purification and characterization of Moran 20 K from Morus alba. Archives of Pharmacal Research , 22, 9–12.10.1007/BF02976428
  • Kim, J. K., Kim, M., Cho, S. G., Kim, M. K., Kim, S. W., & Lim, Y. H. (2010). Biotransformation of mulberroside A from Morus alba results in enhancement of tyrosinase inhibition. Journal of Industrial Microbiology & Biotechnology, 37, 631–637.
  • Kim, H. J., Lee, H. J., Jeong, S. J., Lee, H. J., Kim, S. H., & Park, E. J. (2011). Cortex Mori Radicis extract exerts antiasthmatic effects via enhancement of CD4 + CD 25 + Foxp3 + regulatory T cells and inhibition of Th2 cytokines in a mouse asthma model. Journal of Ethnopharmacology, 138, 40–46.10.1016/j.jep.2011.08.021
  • Kim, J. Y., Lee, W. S., Kim, Y. S., Curtis-Long, M. J., Lee, B. W., Ryu, Y. B., & Park, K. H. (2011). Isolation of Cholinesterase-Inhibiting Flavonoids from Morus lhou. Journal of Agricultural and Food Chemistry, 59, 4589–4596.10.1021/jf200423g
  • Kim, H. J., Baburin, I., Zaugg, J., Ebrahimi, S. N., Hering, S., & Hamburger, M. (2012). HPLC-based activity profiling-discovery of Sanggenons as GABA a receptor modulators in the traditional Chinese drug Sang bai pi (Morus alba root bark). Planta Medica, 78, 440–447.10.1055/s-0031-1298229
  • Kim, J. K., Park, K. T., Lee, H. S., Kim, M., & Lim, Y. H. (2012). Evaluation of the inhibition of mushroom tyrosinase and cellular tyrosinase activities of oxyresveratrol: comparison with mulberroside A. Journal of Enzyme Inhibition and Medicinal Chemistry, 27, 495–503.10.3109/14756366.2011.598866
  • Kimura, Y., Okuda, H., Nomura, T., Fukai, T., & Arichi, S. (1986a). Effects of flavonoids and related compounds from mulberry tree on arachidonate metabolism in rat platelet homogenates. Chemical & pharmaceutical bulletin, 34, 1223–1227.
  • Kimura, Y., Okuda, H., Nomura, T., Fukai, T., & Arichi, S. (1986b). Effects of phenolic constituents from the Mulberry tree on Arachidonate metabolism in Rat platelets. Journal of Natural Products, 49, 639–644.10.1021/np50046a013
  • Ko, H. H., Yu, S. M., Ko, F. N., Teng, C. M., & Lin, C. N. (1997). Bioactive constituents of Morus australis and Broussonetia papyrifera. Journal of Natural Products, 60, 1008–1011.10.1021/np970186o
  • Ko, H. H., Wang, J. J., Lin, H. C., Wang, J. P., & Lin, C. N. (1999). Chemistry and biological activities of constituents from Morus australis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1428, 293–299.10.1016/S0304-4165(99)00084-7
  • Kofujita, H., Yaguchi, M., Doi, N., & Suzuki, K. (2004). A novel cytotoxic prenylated flavonoid from the root of Morus alba. Journal of Insect Biotechnology and Sericology, 73, 113–116.
  • Kollar, P., Bárta, T., Hošek, J., Souček, K., Závalová, V. M., Artinian, S., ... Talhouk, Rabih (2013). Prenylated flavonoids from Morus alba L. Cause inhibition of G1/S transition in THP-1 human leukemia cells and prevent the Lipopolysaccharide-Induced inflammatory response. Evidence-Based Complementary and Alternative Medicine, 2013, 1–13.10.1155/2013/350519
  • Kong, S. Y., Park, M. H., Lee, M., Kim, J. O., Lee, H. R., Han, B. W., ... Kim, H. J. (2015). Kuwanon V inhibits proliferation, promotes cell survival and increases Neurogenesis of neural stem cells. PLOS ONE , 10, e0118188.10.1371/journal.pone.0118188
  • Kuete, V., Fozing, D. C., Kapche, W. F. G. D., Mbaveng, A. T., Kuiate, J. R., Ngadjui, B. T., & Abegaz, B. M. (2009). Antimicrobial activity of the methanolic extract and compounds from Morus mesozygia stem bark. Journal of Ethnopharmacology, 124, 551–555.10.1016/j.jep.2009.05.004
  • Kumar, R. V., & Chauhan, S. (2008). Mulberry: Life enhancer. Journal of Medicinal Plants Research, 2, 271–278.
  • Lee, N. K., Son, K. H., Chang, H. W., Kang, S. S., Park, H., Heo, M. Y., & Kim, H. P. (2004). Prenylated flavonoids as tyrosinase inhibitors. Archives of Pharmacal Research, 27, 1132–1135.10.1007/BF02975118
  • Lee, H. Y., Yum, J. H., Rho, Y. K., Oh, S. J., Choi, H. S., Chang, H. B., ... Hwang, S. (2007). Inhibition of HCV replicon cell growth by 2-Arylbenzofuran derivatives isolated from Mori Cortex Radicis. Planta Medica, 73, 1481–1485.10.1055/s-2007-990249
  • Lee, H. J., Lyu, D. H., Koo, U., Nam, K. W., Hong, S. S., Kim, K. O., ... Mar, W. (2012). Protection of prenylated flavonoids from mori cortex radicis (Moraceae) against nitric oxide-induced cell death in neuroblastoma SH-SY5Y cells. Archives of Pharmacal Research, 35, 163–170.10.1007/s12272-012-0118-7
  • Lee, K. J., Kim, B. K., & Kil, K. J. (2013). Suppressive effects of Morus alba Linne root bark (MRAL) on activation of MC/9 mast cells. The Korea Journal of Herbology, 28, 33–42.10.6116/kjh.2013.28.1.33
  • Li, Y. C., & Xu, S. R. (2012). Clinical observation on treating dry eye with the Sangbaipi decoction. Clinical Journal of Chinese Medicine, 4, 107–108.
  • Li, Y. H., Huang, L., Zeng, X. Z., Zhong, G. P., Ying, M. J., Huang, M., & Bi, H. C. (2014). Down-regulation of P-gp expression and function after Mulberroside A treatment: Potential role of protein kinase C and NF-kappa B. Chemico-Biological Interactions., 213, 44–50.10.1016/j.cbi.2014.02.004
  • Liang, J. H., Fu, Y. W., Zhang, Q. Z., Xu, D. H., Wang, B., & Lin, D. J. (2015). Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in Grass Carp. Journal of Agricultural and Food Chemistry, 63, 1452–1459.10.1021/jf505544e
  • Lim, H. J., Jin, H. G., Woo, E. R., Lee, S. K., & Kim, H. P. (2013). The root barks of Morus alba and the flavonoid constituents inhibit airway inflammation. Journal of Ethnopharmacology, 149, 169–175.10.1016/j.jep.2013.06.017
  • Lin, C. N., Shieh, W. L., Ko, F. N., & Teng, C. M. (1993). Antiplatelet activity of some prenylflavonoids. Biochemical Pharmacology , 45, 509–512.
  • Luo, S. D., Nemec, J., & Ning, B. M. (1995). Anti-HIV flavonoids from Morus alba. Yunnan Zhiwu Yanjiu, 17, 89–95.
  • Ma, D. N., & Cai, W. R. (2013). Sangbaipi decoction on acute exacerbation of chronic obstructive pulmonary disease(Phlegm-heat Obstructing Lung)clinical efficacy and prognosis. Journal of Zhejiang Chinese Medical University, 37, 691–694.
  • Mazimba, O., Majinda, R. R. T., & Motlhanka, D. (2011). Antioxidant and antibacterial constituents from Morus nigra. African Journal of Pharmacy and Pharmacology, 5, 751–754.10.5897/AJPP
  • Mei, W. L., Li, H., Zhong, H. M., Zuo, W. J., & Dai, H. F. (2011). Bioactive constituents from Hydnocarpus hainanensis (merr.) sleum. Redai Yaredai Zhiwu Xuebao, 19, 351–354.
  • Mihara, S. I., Hara, M., Nakamura, M., Sakurawi, K., Tokura, K., Fujimoto, M., ... Nomura, T. (1995). Non-peptide bombesin receptor antagonists, kuwanon G and H, isolated from mulberry. Biochemical and Biophysical Research Communications, 213, 594–599.10.1006/bbrc.1995.2173
  • Nam, S. Y., Yi, H. K., Lee, J. C., Kim, J. C., Song, C. H., Park, J. W., ... Hwang, P. H. (2002). Cortex mori extract induces cancer cell apoptosis through inhibition of microtubule assembly. Archives of Pharmacal Research, 25, 191–196.10.1007/BF02976562
  • Nomura, T., & Fukai, T. (1980). Kuwanon G, a new flavone derivative from the root barks of the cultivated mulberry tree (Morus alba L.). Chemical & pharmaceutical bulletin, 28, 2548–2552.
  • Nomura, T., Fukai, T., Uno, J., & Arai, T. (1978). Mulberrofuran A, a New Isoprenoid 2-Arylbenzofuran from the root bark of the cultivated Mulberry tree (Morus alba L.). Heterocycles, 9, 1593–1601.10.3987/R-1978-11-1593
  • Nomura, T., Fukai, T., & Narita, T. (1980). Hypotensive Constituent, Kuwaman H, a New Flavone Derivative from the Root Bark of the Cultivated Mylberry Tree (Morus alba L.). Heterocycles, 14, 1943–1951.10.3987/R-1980-12-1943
  • Nomura, T., Fukai, T., Hano, Y., & Uzawa, J. (1981a). Structure of Sanggenon C, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang-bái-pí” (Morus Root Bark). Heterocycles, 16, 2141–2148.10.3987/R-1981-12-2141
  • Nomura, T., Fukai, T., Matsumoto, J., Fukushima, K., & Momose, Y. (1981b). Structure of Mulberrofuran C, a natural hypotensive Diels-Alder adduct from root barks of the cultivated Mulberry tree (Morus bombycis Koidzumi). Heterocycles, 16, 759–765.10.3987/R-1981-05-0759
  • Nomura, T., Fukai, T., Hano, Y., & Uzawa, J. (1982). Structure of Sanggenon D, a natural hypotensive Diels-Alder adduct from Chinese crude drug “Sang-Bái-Pí” (Morus Root Barks). Heterocycles, 17, 381–389.10.3987/S-1982-01-0381
  • Nomura, T., Fukai, T., Hano, Y., & Ikuta, H. (1983). Kuwanon M, a new Diels-Alder adduct from the root barks of the cultivated Mulberry tree (Morus lhou (ser.) Koidz.). HETEROCYCLES, 20, 585–591.10.3987/R-1983-04-0585
  • Oh, H., Ko, E. K., Jun, J. Y., Oh, M. H., Park, S. U., Kang, K. H., Lee, H. S., & Kim, Y. C. (2002). Hepatoprotective and free radical scavenging activities of Prenylflavonoids, Coumarin, and Stilbene from Morus alba. Planta Medica , 68, 932–934.10.1055/s-2002-34930
  • Oh, T. S., Choi, D. K., & Yun, J. W. (2011). Morus alba L. root bark stimulates adipocyte differentiation in 3T3-L1 cells. Biotechnology and Bioprocess Engineering, 16, 978–986.10.1007/s12257-011-0174-8
  • Oshima, Y., Konno, C., Hikino, H., & Matsushita, K. (1980a). Structure of moracenin B, a hypotensive principle of Morus root barks. Tetrahedron Letters, 21, 3381–3384.10.1016/S0040-4039(00)78694-1
  • Oshima, Y., Konno, C., Hikino, H., & Matsushita, K. (1980b). Structure of moracenin C, a hypotensive principle of Morus root barks. Heterocycles, 14, 1461–1464.
  • Oshima, Y., Konno, C., Hikino, H., & Matsushita, K. (1980c). The validity of oriental medicines. Part 24. Structure of moracenin A, a hypotensive principle of Morus root barks. Heterocycles, 14, 1287–1290.
  • Oshima, Y., Konno, C., & Hikino, H. (1981). Validity of oriental medicines. Part 28. Structure of moracenin D, a hypotensive principle of Morus root barks. Heterocycles, 16, 979–982.
  • Park, W. J., Lee, H. J., & Yang, S. G. (1990). The inhibitory effect of sanggenon C from the root-bark of Morus alba L. on the growth and the cellular adherence of Streptococcus mutans. Yakhak Hoechi, 34, 434–438.
  • Park, K. M., You, J. S., Lee, H. Y., Baek, N. I., & Hwang, J. K. (2003). Kuwanon G: An antibacterial agent from the root bark of Morus alba against oral pathogens. Journal of Ethnopharmacology, 84, 181–185.10.1016/S0378-8741(02)00318-5
  • Park, K. T., Kim, J. K., Hwang, D., Yoo, Y. M., & Lim, Y. H. (2011). Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food and Chemical Toxicology , 49, 3038–3045.10.1016/j.fct.2011.09.008
  • Pharmacopoeia Committee of P. R. China. (2010). Pharmacopoeia of people’s republic of China. Beijing: Chemical Industry Publishers.
  • Phung, T. X. B., Tran, T. H. H., Dan, T. T. H., Chau, V. M., Hoang, T. H., & Nguyen, T. D. (2012). Chalcone-derived Diels–Alder adducts as NF-κB inhibitors from Morus alba. Journal of Asian Natural Products Research, 14, 596–600.10.1080/10286020.2012.670221
  • Pianwijanpong, N., Pongpan, N., Suntornsuk, L., & Luanratana, O. (2007). The triterpene constituents of the root bark of a hybrid between Morus alba L. and M. rotundiloba Koidz. and its antityrosinase activities. Natural Product Communications, 2, 381–384.
  • Qin, J., Fan, M., He, J., Wu, X. D., Peng, L. Y., Su, J., ... Zhao, Q. S. (2015). New cytotoxic and anti-inflammatory compounds isolated from Morus alba L. Natural Product Research, 29, 1711–1718.10.1080/14786419.2014.999333
  • Rollinger, J. M., Bodensieck, A., Seger, C., Ellmerer, E. P., Bauer, R., Langer, T., & Stuppner, H. (2005). Discovering COX-Inhibiting constituents of Morus root bark: activity-guided versus computer-aided methods. Planta Medica, 71, 399–405.10.1055/s-2005-864132
  • Rollinger, J. M., Spitaler, R., Menz, M., Marschall, K., Zelger, R., Ellmerer, E. P., ... Stuppner, H. (2006). Venturia inaequalis -Inhibiting Diels−Alder adducts from Morus root bark. Journal of Agricultural and Food Chemistry, 54, 8432–8436.10.1021/jf061871g
  • Seo, C. S., Lim, H. S., Jeong, S. J., Ha, H., & Shin, H. K. (2013). HPLC-PDA analysis and anti-inflammatory effects of Mori cortex Radicis. Natural Product Communications, 8, 1443–1446.
  • Sergio, W. (1989). Mulberry roots and seeds may be effective in the treatment of AIDS. Medical Hypotheses, 29, 75–76.10.1016/0306-9877(89)90172-2
  • Sharma, R., Sharma, A., Shono, T., Takasugi, M., Shirata, A., Fujimura, T., & Machii, H. (2001). Mulberry Moracins: Scavengers of UV stress-generated free radicals. Bioscience, Biotechnology, and Biochemistry, 65, 1402–1405.10.1271/bbb.65.1402
  • Shen, R. C., & Lin, M. (2001). Diels-Alder type adducts from Morus cathayana. Phytochemistry, 57, 1231–1235.10.1016/S0031-9422(01)00171-6
  • Shi, Y. Q., Fukai, T., Sakagami, H., Chang, W. J., Yang, P. Q., Wang, F. P., & Nomura, T. (2001). Cytotoxic flavonoids with isoprenoid groups from Morus m ongolica 1. Journal of Natural Products, 64, 181–188.10.1021/np000317c
  • Singab, A. N. B., El-Beshbishy, H. A., Yonekawa, M., Nomura, T., & Fukai, T. (2005). Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 100, 333–338.10.1016/j.jep.2005.03.013
  • Singab, A. N. B., Ayoub, N. A., Ali, E. N., & Mostafa, N. M. (2010). Antioxidant and hepatoprotective activities of Egyptian moraceous plants against carbon tetrachloride-induced oxidative stress and liver damage in rats. Pharmaceutical Biology, 48, 1255–1264.10.3109/13880201003730659
  • Sohn, H. Y., Son, K. H., Kwon, C. S., Kwon, G. S., & Kang, S. S. (2004). Antimicrobial and cytotoxic activity of 18 prenylated flavonoids isolated from medicinal plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine, 11, 666–672.10.1016/j.phymed.2003.09.005
  • Tan, Y. X., Liu, C., & Chen, R. Y. (2008). 2-Arylbenzofuran derivatives from Morus wittiorum. Acta Pharmaceutica Sinica, 43, 1119–1122.
  • Uno, T., Isogai, A., Suzuki, A., & Shirata, A. (1981). Isolation and identification of ethyl 2,4-dihydroxybenzoate and 5,7-dihydroxychromone from the root bark of mulberry tree (Morus alba) and their biological activity. Nippon Sanshigaku Zasshi, 50, 422–427.
  • Wang, L., Yang, Y., Liu, C., & Chen, R. (2010). Three new compounds from Morus nigra L. Journal of Asian Natural Products Research, 12, 431–437.10.1080/10286020.2010.489824
  • Wang, C. P., Zhang, L. Z., Li, G. C., Shi, Y. W., Li, J. L., Zhang, X. C., ... Liang, X. M. (2014). Mulberroside a protects against ischemic impairment in primary culture of rat cortical neurons after oxygen-glucose deprivation followed by reperfusion. Journal of Neuroscience Research, 92, 944–954.10.1002/jnr.v92.7
  • Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J., & Nash, R. J. (2001). Polyhydroxylated alkaloids-natural occurrence and therapeutic applications. Phytochemistry, 56, 265–295.10.1016/S0031-9422(00)00451-9
  • Yamatake, Y., Shibata, M., & Nagai, M. (1976). Pharmacological studies on root bark of mulberry tree (Morus alba L.). The Japanese Journal of Pharmacology, 26, 461–469.10.1254/jjp.26.461
  • Yang, W. Y., & Wan, D. G. (2008). Studies on the classification and original plants of Chinese mulberry herbs(II). Lishizhen Medicine and Materia Medica Research, 19, 2872–2874.
  • Yang, Z. G., Matsuzaki, K., Takamatsu, S., & Kitanaka, S. (2011). Inhibitory effects of constituents from Morus alba var. Multicaulis on differentiation of 3T3-L1 cells and nitric oxide production in RAW264.7 cells. Molecules, 16, 6010–6022.10.3390/molecules16076010
  • Yang, Y., Tan, Y. X., Chen, R. Y., & Kang, J. (2014). The latest review on the polyphenols and their bioactivities of Chinese Morus plants. Journal of Asian Natural Products Research, 16, 690–702.10.1080/10286020.2014.923405
  • Yanze, Liu, Zhimin, Wang, & Junzeng, Zhang (2015). Dietary chinese herbs: Chemistry, pharmacology and clinical evidence. Wien: Springer-Verlag.
  • Yoshizawa, S., Suganuma, M., Fujiki, H., Fukai, T., Nomura, T., & Sugimura, T. (1989). Morusin, isolated from root bark of Morus alba L., inhibits tumor promotion by teleocidin. Phytotherapy Research, 3, 193–195.10.1002/(ISSN)1099-1573
  • Zafar, M. S., Muhammad, F., Javed, I., Akhtar, M., Khaliq, T., Aslam, B., ... Zafar, H. (2013). White mulberry (Morus alba): A brief phytochemical and pharmacological evaluations account. International journal of agriculture and biology, 15, 612–620.
  • Zelová, H., Hanáková, Z., Čermáková, Z., Šmejkal, K., Dalĺ Acqua, S., Babula, P., ... Cvačka, J. (2014). Evaluation of anti-inflammatory activity of Prenylated substances isolated from Morus alba and Morus nigra Journal of Natural Products, 77, 1297–1303.10.1021/np401025f
  • Zhang, G. G., Li, Q. H., Ye, Y. Z., Zhang, H. X., & Li, F. (2005). Studies on the extraction and isolation and antivirus effect of chemical constituents in Morus alba. Shenyang Yaoke Daxue Xuebao, 22, 207–209.
  • Zhang, Q. J., Tang, Y. B., Chen, R. Y., & Yu, D. Q. (2007). Three new cytotoxic Diels-Alder-type adducts from Morus australis. Chemistry & Biodiversity, 4, 1533–1540.
  • Zhang, M., Chen, M., Zhang, H. Q., Sun, S., Xia, B., & Wu, F. H. (2009). In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia, 80, 475–477.10.1016/j.fitote.2009.06.009
  • Zhang, M., Wang, R. R., Chen, M., Zhang, H. Q., Sun, S., & Zhang, L. Y. (2009). A new flavanone glycoside with anti-proliferation activity from the root bark of Morus alba. Zhongguo Tianran Yaowu, 7, 105–107.
  • Zhang, N., Li, Y. F., Zhou, Y. M., Hou, J., He, Q., Hu, X. G., ... Nie, Z. X. (2013). Rapid detection of polyhydroxylated alkaloids in mulberry using leaf spray mass spectrometry. Analytical Methods, 5, 2455–2460.10.1039/c3ay00018d
  • Zhang, X. M., Liao, W. F., Cong, Q. F., Dong, Q., & Ding, K. (2013). Isolation and structural characterization of the polysaccharides of Cortex Mori radicis. Huaxue Xuebao, 71, 722–728.
  • Zhang, Y. L., Luo, J. G., Wan, C. X., Zhou, Z. B., & Kong, L. Y. (2014). Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities. Fitoterapia, 92, 116–126.10.1016/j.fitote.2013.10.017
  • Zhao, M., Yan, H. P., & Xiong, X. D. (2003). Clinical observation of effect of Jiawei Sangbaipi Decoction in treating severe pulmonary disease. Chinese Journal of Experimental Traditional Medical Formulae, 9, 52–54.
  • Zheng, Z. P., Cheng, K. W., Zhu, Q., Wang, X. C., Lin, Z. X., & Wang, M. F. (2010). Tyrosinase inhibitory constituents from the roots of Morus nigra: A structure−activity relationship study. Journal of Agricultural and Food Chemistry, 58, 5368–5373.10.1021/jf1003607
  • Zheng, Z. P., Tan, H.-Y., & Wang, M. (2012). Tyrosinase inhibition constituents from the roots of Morus australis. Fitoterapia, 83, 1008–1013.10.1016/j.fitote.2012.06.001