993
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

On numerical soliton and convergence analysis of Benjamin-Bona-Mahony-Burger equation via octic B-spline collocation

ORCID Icon &
Pages 146-163 | Received 15 Nov 2022, Accepted 11 Mar 2023, Published online: 31 Mar 2023

Abstract

In this work, we employ an octic B-spline function to construct a collocation technique for obtaining solutions to soliton on Benjamin-Bona-Mahony-Burgers (BBMB) equation. The BBMB equation is fully-discretized in two forums such as: spatial and time discretization using octic B-spline function of the unknown variable and the Crank-Nicolson procedure, respectively. The robustness of the proposed method is determined by examining four test problems. On Neumann (Fourier) method is employed to obtain unconditional stability. A convergence analysis for the current scheme is also performed, resulting in O(h9+(Δt)2). The accuracy and efficiency of the proposed method are justified with error norms, invariants and the current result is also compared with existing results and found to be better as well as a better agreement to analytical solution. The proposed scheme is found to be more computationally efficient with (2N+16) operations for whole process.

1. Introduction

BBMB is an important tool in the physical sciences to study heat transfer (Chen & Gurtin, Citation1968), seepage theory of homogeneous fluids (Barenblatt, Zheltov, & Kochina, Citation1960), design of an undular bore (Peregrine, Citation1966), and non-steady fluid flow (Ting, Citation1963).

Generalized Benjamin-Bona-Mohany-Burger’s equation is (1.1) wtwxxtβwxx+λwx+wwx=0, x[a,b], t[0,T] (1.1) with, initial and boundary conditions (1.2) w(x,0)=f(x), x[a,b](1.2) (1.3) w(a,t)=g0(t), w(b,t)=g1(t)(1.3) (1.4) wx(a,t)=wx(b,t)=0.(1.4)

There are various analytical and numerical techniques available in the literature to obtain the soliton of BBMB equation, such as: modified BBM equation by first integral method (Abbasbandy & Shirzadi, Citation2010), odd degree spline interpolation convergence (Boor, Citation1968), homotopy technique for soliton of explicit BBMB (Fakhari & Domairry, Citation2007), decomposition method for soliton solution (Al-Khaled, Momani, & Alawneh, Citation2005), improvised B-spline collocation method of fourth order (Kukreja, Citation2022), collocation method (Zarebnia & Parvaz, Citation2016), nonlinear BBMB equations by He’s methods (Tari & Ganji, Citation2007), finite difference method (FDM) through Crank-Nicolson Type (CNT) (Omrani & Ayadi, Citation2008), exp function technique for nonlinear BBMB explicitly (Ganji, Ganji, & Bararnia, Citation2009), Painlevé analysis and lie Symmetries (Kumar, Gupta, & Jiwari, Citation2013), quartic B-spline collocation method (Arora, Mittal, & Singh, Citation2014), B-spline collocation (Fyfe, Citation1969; Jena & Gebremedhin, Citation2023; Senapati & Jena, Citation2023; Shallal, Ali, Raslan, & Taqi, Citation2019), block method (Jena & Gebremedhin, Citation2020; Gebremedhin & Jena, Citation2020; Jena, Mohanty, & Misra, Citation2018), association of radial basis functions (RBF) and meshless method (Dehghan, Abbaszadeh, & Mohebbi, Citation2014), Galerkin method (Dehghan & Abbaszadeh, Citation2015), B-spline quasi-interpolation (Kumar & Baskar, Citation2016), hybridization of Lucas with Fibonacci polynomials (Oruç, Citation2017), finite element method (FEM) coupled the regularized long wave equation (RLW) (Gardner, Gardner, & Dag, Citation1995), time-space pseudo-spectral method (Mittal, Balyan, & Tiger, Citation2018), solitary waves and roguwaves with interaction phenomena (Hossen, Roshid, & Ali, Citation2018).

Crank-Nicolson finite difference method based on a midpoint upwind scheme (Kadalbajoo & Awasthi, Citation2008), finite difference technique (Kutluay & Esen, Citation2006), finite difference type operators on cubic spline interpolation (Lucas, Citation1974), improvised collocation algorithm (Shallu & Kukreja, Citation2021), Hermite splines with quintic collocation (Arora, Jain, & Kukreja, Citation2020), error analysis for approximate solution of BBMB equation (Zarebna & Parvaz, Citation2020), numerical treatment and analysis of BBMB equation (Zarebnia & Parvaz, Citation2016), Hermite collocation of sixth order (Kumari & Kukreja, Citation2022), fourth-order accurate difference scheme (Bayarassou, Citation2019). Legendre spectral element method (Dehghan, Shafieeabyaneh, & Abbaszadeh, Citation2021), bilinear formalism and ansatze’s function towards solution of BBMB (Hossen, Roshid, & Ali, Citation2019) and lie algebra (Casas, Citation1996). The other methods related with the schemes are B-spline collocation for Kuramoto Sivashinsky equation (Lakestani & Dehghan, Citation2012), MRLW equation in B-Spline environment (Jena, Senapati, & Gebremedhin, Citation2020a), study of solitions in BFRK scheme (Jena, Senapati, & Gebremedhin, Citation2020b), Burgers soliton by decatic B-spline Function for collocation (Jena & Gebremedhin, Citation2021a), computational technique for heat and advection diffusion equations (Jena & Gebremedhin, Citation2021b), fifth-order boundary value problems by septic collocation (Senapati & Jena, Citation2022), soliton of Kuramoto-Sivashinsky equation(KSE) (Jena & Gebremedhin, Citation2021c), boundary value problem of fifth order (Jena & Gebremedhin, Citation2022), integral transform (Jena, Naya, & Acharya, Citation2017; Mohanty & Jena, Citation2018; Mohanty, Jena, & Misra, Citation2021a, Citation2021b).

Recently, various fractional differential equations are introduced to describe different engineering real situations. So many authors are working on fractional differential equations based on the reproducing kernel (Arqub, Citation2019), singular Fredholm time-fractional partial integro differential equations (Arqub, Citation2019), Hirota bilinear method (Geng, Mou & Dai, Citation2023), time-fractional Ablowitz-Ladik model using the fractional exponential function (Fang, Mou, Zhang, & Wang, Citation2021), PT-symmetric potential method (Bo, Wang, Fang, Wang, & Dai, Citation2023; Wen et al., Citation2021), Projecting transformation and the Darboux method (Wu & Jiang, Citation2022), MPS-PINN method (Wen, Wu, Liu, & Dai, Citation2022), an energy-conservation deep-learning (ECDL) method (Fang et al., Citation2022) are constructed to study a coupled nonlinear Schrödinger equation (CNLSE).

Some authors are suggested Lie symmetric methods to find the solution of partial differential equations like two-dimensional Burgers–Huxley equation (Hussain, Bano, Khan, Baleanu, & Sooppy Nisar, Citation2020), (2 + 1) and (3 + 1) dimensional sine-Gordon equation (Wang, Yang, Gu, Guan, & Kara, Citation2020; Wang, Citation2021b), (3 + 1)-dimensional Schrödinger equation (Wang, Citation2021a), Kdv and mKdv equation (Wang & Wazwaz, Citation2022a), Kdv-Burgers-Kuramoto equation in Wang (Citation2021c), Study of modified Gardner-type equation and its time fractional form (Wang & Wazwaz, Citation2022b), Cauchy problem (Casas, Citation1996), Daftardar-Jafari method (Al-Jawary, Radhi, & Ravnik, Citation2018), differential transformation method (Mohanty & Jena, Citation2018).

Here, the novelty of our paper is the application of a higher-order banded sparse matrix as well as higher-order derivative to improve the numerical results of BBMB equation. Nonlinear terms are handled by quasi-linearization. A convergence analysis is established with the help of three difference operators and Taylor series. An unconditional stability analysis is based on Von Neumann approach. Numerical examples are soughted and found to be better than existing results and agree with the analytical solution. The proposed scheme may be employed for other nonlinear PDEs in the physical sciences for future research.

The system of equations with a coefficient matrix is solved using the octa-diagonal algorithm, which involves (2N+16) simple arithmetic operations. Hence, the method can be used with simple and elementary operations rather than complex calculations. The method is inexpensive, simple to implement, dependable, and computationally efficient. It can be used as an alternative for a wide range of nonlinear problems for computational complexity.

This work is organized as follows: The introductory part is given in Section 1. Section 2 models an octic B-spline scheme and BBMB equation is implemented in Section 3. The Von Neumann method is employed in Section 4 to obtain stability in unconditional mode. Section 5 describes the convergence of this method. In section 6, four test problems are taken to justify the efficiency, robustness and computational complexity of the proposed method. Section 7 ends with some conclusions.

2. Octic B-Spline collocation (OBSC)

Let us consider uniform partition such that ax0<x1<.<xNb for the domain [a, b] with step size h=xm+1xm, m = 0,1,2N1.

The zeroth degree B-spline is expressed as; (2.1) ξm,0={1, x[xm,xm+1]0 otherwise  (2.1)

The mth basis function of gth degree by (Boor, Citation1968) (2.2) ξm,g(x)=xxmxm+gxmξm,g1(x)+xm+g+1xxm+g+1xm+1ξm+1,g1(x), g1 (2.2)

Employing Equationequation (2.1) and substituting g=1 in Equationequation (2.2), B-spline of degree one is found in Equationequation (2.3) (2.3) ξm,1=1h{xxm, x [xm,xm+1] xm+2x, x [xm+1,xm+2] 0 otherwise  (2.3)

Similarly, applying septic B-spline and taking g=8 in Equationequation (2.2), our desired octic B-spline is as follows (): (2.4) ξm,8(x)=xxm8hξg,7(x)+xm+9x8hξm+1,7(x) (2.4) (2.5) ξm,8=1h8{a18 xIm4 a18(91)a28 xIm3a18(91)a28 +(92)a38 x Im2 a18(91)a28 +(92)a38 (93)a48 x Im1a18(91)a28 +(92)a38 (93)a48+(94)a58 x Ima68(91)a78 +(92)a88 (93)a98 x Im+1a68(91)a78 +(92)a88 x Im+2a68(91)a78 x Im+3a68 x Im+40 otherwise (2.5) where xxm4= a1xxm3=a2xxm2=a3 xxm1=a4xxm =a5xm+5x =a6 xm+4x =a7xm+3x =a8xm+2x =a9

Table 1. Basis functions of octic B-spline and it’s derivatives.

The approximate solution w(x,t) using octic B-spline ξm(x) is defined as follows; wm(x,t)=m4N+3αm(t)ξm(x); where, αm(t) is time parameter. (2.6) (2.7) w(xm)=αm4+247αm3+4293αm2+15619 αm1+15619 αm+4293 αm+1+247αm+2+αm+3  w(1)(xm)=8h(αm4119αm31071αm21225αm1+1225αm+1071αm+1+119αm+2+αm+3) w(2)(xm)=56h2(αm4+ 55αm3+ 189 αm2245αm1245αm+189αm+1+55αm+2+αm+3)w(3)(xm)=336h3 (αm423αm3+ 9αm2+ 95αm195αm9αm+1+23αm+2+αm+3)w(4)(xm)=1680h4(αm4+7αm3 27αm2+19αm1+ 19 αm27αm+1+7αm+2+αm+3) w(5)(xm)=6720h5(αm4+αm3+ 9 αm225αm1+25αm9αm+1αm+2+αm+3)  w(6)(xm)=20160h6(αm45αm3+ 9αm25αm15αm+ 9αm+15αm+2+αm+3)  w(7)(xm)=40320h7(αm4+7αm321αm2+ 35αm135αm+21αm+17αm+2+αm+3)(2.7)

3. Application of method

In the governing Equationequation (1.1), the Octic B-spline function of the unknown variable and the Crank-Nicolson technique (NLT) are used for spatial and temporal discretization sense. (3.1) (wwxx)tβwxx+wwx+λwx=0(3.1) (3.2) {(wwxx)n+1(wwxx)nk}β{wxxn+1+wxxn2}+{(wwx)n+1+(wwx)n2}+λ{wxn+1+wxn2} =0 (3.2)

The non-linear term wwx can be transformed to linear form by using quasi-linearization (3.3) (wwx)n+1=wn+1wxn+wnwxn+1(wwx)n (3.3)

Employing Equationequation (3.3) in Equationequation (3.2) (3.4) An+1=ψn (3.4) where An+1=[wn+1wxxn+1]+k2[βwxxn+1+wn+1wxn+wnwxn+1+λwxn+1] ψn=[wnwxxn]k2[βwxxn+λwxn]

Associating Equationequation (2.7) in Equationequation (3.4) and arranging the coefficient αmln+1,l=1(1)4 αm+en+1,e=0(1)3 separately, (3.5) A1αm4n+1+A2αm3n+1+A3αm2n+1+A4αm1n+1+A5αmn+1+A6αm+1n+1+A7αm+2n+1+A8αm+3n+1=B1αm4n+B2αm3n+B3αm2n+B4αm1n+B5αmn+B6αm+1n+B7αm+2n+B8αm+3n(3.5) where m=0(1)N A1=h24h(λP+Q)k28(2+βk)h2 B1=56+h2+k(28β+4λh)h2 A2=2474(119λ247P+119Q)kh1540(2+βk)h2 B2=247+476λkh+1540(2+βk)h2 A3=9(477h2+4h(119λ477P+119Q)k+588(2+βk)h2 B3=9(477h2+476λhk+588(2+βk))h2 A4=156194(1225λ15619P+1225Q)kh+ 6860(2+βk)h2 B4=15619+4900λkh6860(2+βk)h2 A5=15619+4(1225λ+15619P+1225Q)kh+ 6860(2+βk)h2 B5=156194900λkh6860(2+βk)h2 A6=9(477h2+4h(119λ+477P+119Q)k588(2+βk)h2 B6=9(477h2476λhk+588(2+βk))h2 A7=247+4(119λ+247P+119Q)kh1540(2+βk)h2 B7=247476λkh+1540(2+βk)h2 A8=h2+4h(λ+P+Q)k28(2+βk)h2 B8=56+h2+k(28β4λh)h2

EquationEquation (3.5) contains (N+1) unknow with (N+8) parameters (α4,α3,α2,.αN+2,αN+3).

The boundary conditions and higher-order derivatives of the octic B-spline introduce seven more terms to ensure a unique solution. The system of equations forms a matrix (3.6) D(αn)Cn+1=GCn(3.6)

In this case, both D and G are (N+8)×(N+8) banded matrices. MATLAB is used to solve the system of Equationequations (3.6) using the octa-diagonal algorithm

Initial state

Applying the initial conditions in Equationequation (3.6) (3.7)  wm(x,t)=m4N+3αm0(t)ξm(x)(3.7)

To determine the initial state {α40,α30,α20.αN+20,αN+30}, the approximate solution w(x,t) satisfy the boundary conditions as follows: w3(x0,0)= (α4023α30+ 9α20+ 95α1095α009α10+23α20+α30)=0 w4(x0,0)=(α40+7α30 27α20+19α10+ 19 α0027α10+7α20+α30)=0 w5(x0,0)=(α40+α30+ 9 α2025α10+25α009α10α20+α30)=0 w7(x0,0)=(α40+7α3021α20+ 35α1035α00+21α107α20+α30)=0 w(xm,0)=αm40+247αm30+4293αm20+15619αm10+15619αm0+4293αm+10+247αm+20+αm+30=f(xm,0) w4(xN,0)=(αN40+7αN30 27αN20+19αN10+ 19 αN027αN+10+7αN+20+αN+30)=0 w5(xN,0)=(αN40+αN30+ 9 αN2025αN10+25αN09αN+10αN+20+αN+30)=0 (3.8) w6(xN,0)=(αN405αN30+ 9αN205αN105αN0+ 9αN+105αN+20+αN+30)=0(3.8)

Initial matrix is of the form AC0=γ

Where C0=[α40,α30,α20.αN+20,αN+30]T,γ=[0,0,0,0,f(xm)0,0,0]T

m=0,1,.N and (3.9) D=(1239959592311727191927711192525911172135352171124742931561915619429324711247429315619156194293247112474293156191561942932471172719192771119252591115955951)(3.9)

To solve the system, we apply the octa diagonal algorithm to obtain the initial vector C0=[α40,α30,α20.αN+20,αN+30]T. Numerical solution of Equationequation (1.1) is obtained by iterating Equationequation (3.6).

General solution at x=xm can be written as: (3.10) w(xm,t)=αm4+247αm3+4293αm2+15619 αm1+15619 αm+4293 αm+1+ 247αm+2+αm+3 (3.10)

4. Stability analysis

To investigate the stability of Equationequation (3.4), employ Von-Neumann procedure (4.1)  σmn=γneiθmh(4.1) where, i=1, an imaginary unit, also θ and h is the mode number and the element size respectively. Associating Equationequation (4.1) into Equationequation (3.5) and further simplification γn+1[A1e4iθh+A2e3iθh+A3e2iθh+A4eiθh+A5+A6eiθh+A7e2iθh+A8e3iθh] (4.2) =γn[B1e4iθh+B2e3iθh+B3e2iθh+B4eiθh+B5+B6eiθh+B7e2iθh+B8e3iθh](4.2)

Applying the Euler’s formula e±iθh=cos(θh)±isin(θh) in Equation(4.2) (4.3) γn+1γn=S1+iR1S2+iR2 (4.3) where S1=B1cos(4θh)+(B2+B8)cos(3θh)+(B3+B7)cos(2θh)+(B4+B6)cos(θh)+B5 R1=B1sin(4θh)+(B8B2)sin(3θh)+(B7B3)sin(2θh)+(B6B4)sin(θh) S2=A1cos(4θh)+(A2+A8)cos(3θh)+(A3+A7)cos(2θh)+(A4+A6)cos(θh)+A5 R2=A1sin(4θh)+(A8A2)sin(3θh)+(A7A3)sin(2θh)+(A6A4)sin(θh)

Applying the stability condition |γn+1γn|1 (4.4) S12+R12S22R221 (4.4)

The unconditionally stable condition is followed from Equationequation (4.4).

5. Convergence of the scheme

This section contains study for the convergence of present topic.

Lemma 5.1.

Octic B-Spline {ξ4,ξ3,ξ2,ξN+3} satisfy the following inequality (5.1) |m=4N+3ξm(x)|55938(5.1)

Proof.

From real analysis, we have (5.2) |m=4N+3ξm(x)|m=4N+3|ξm(x)|(5.2)

At any node xm, (5.3) |m=4N+3ξm(x)|=|ξm4(x)|+|ξm3(x)|+|ξm2(x)|+|ξm1(x)|+|ξm(x)|+|ξm+1(x)|+|ξm+2(x)|+|ξm+3(x)|=1+247+4293+15619+15619+4293+247+140320 (5.3)

Also, in each sub interval xm1xxm, ξm4(xm1)=247, ξm3(xm1)=4293, ξm2(xm1)=15619,  ξm1(xm1)=15619,ξm(xm)=15619,ξm+1(xm)=4293, ξm+2(xm)=247,ξm+3(xm)=1

Hence, in each sub interval xm1xxm (5.4) m=4N+3|ξm(x)||ξm4(x)|+|ξm3(x)|+|ξm2(x)|+|ξm1(x)|+|ξm(x)|+|ξm+1(x)|+|ξm+2(x)|+|ξm+3(x)|247+4293+15619+15619+15619+4293+247+155938(5.4)

Hence, |m=4N+3ξm(x)|55938.

Theorem 5.2.

Suppose that w(x,t) and W(x,t) be the analytic and approximate solution respectively of Equationequation (1.1) and w(x,t)C8[a,b] and also |8w(x,t)x8|L, then (5.5) w(x,t)W(x,t)=O(h9+(Δt)2)(5.5)

We have a unique octic B-spline Equation(3.7) that satisfies the interpolation condition w(xm)=H(xm); m=0,1,2.N. and H(x) is also smooth.

EquationEquation (2.7) estimates the coefficients of αm  for m=4,3,2.N+3 (5.6) w(xm4)+247w(xm3)+4293w(xm2)+15619w(xm1)+15619w(xm)+4293w(xm+1)+247w(xm+2)+w(xm+3)=8h(H(xm4)119H(xm3)1071H(xm2)1225H(xm1)+1225H(xm)+1071H(xm+1)+119H(xm+2)+H(xm+3) (5.6) (5.7) w(xm4)+247w(xm3)+4293w(xm2)+15619w(xm1)+15619w(xm)+4293w(xm+1)+247w(xm+2)+w(xm+3)=56h2(H(xm4)+55H(xm3)+189H(xm2)245H(xm1)245H(xm)+189H(xm+1)+55H(xm+2)+H(xm+3))(5.7) (5.8) w(xm4)+247w(xm3)+4293w(xm2)+15619w(xm1)+15619w(xm)+4293w(xm+1)+247w(xm+2)+w(xm+3)=336h3(H(xm4)23H(xm3)+9H(xm2)+95H(xm1)95H(xm)- 9H(xm+1)+23H(xm+2)+H(xm+3))(5.8) (5.9) wiv(xm4)+247wiv(xm3)+4293wiv(xm2)+15619wiv(xm1)+15619wiv(xm)+4293wiv(xm+1)+247wiv(xm+2)+wiv(xm+3)=1680h4(H(xm4)+7H(xm3)27H(xm2)+ 19H(xm1)+19H(xm)27H(xm+1)+7H(xm+2)+H(xm+3))(5.9) (5.10) w(v)(xm4)+247w(v)(xm3)+4293w(v)(xm2)+15619w(v)(xm1)+15619w(v)(xm)+4293w(v)(xm+1)+247w(v)(xm+2)+w(v)(xm+3)=6720h5(H(xm4)+H(xm3)+9H(xm2)25H(xm1)+25H(xm)9H(xm+1)H(xm+2)+H(xm+3)(5.10) (5.11) w(vi)(xm4)+247w(vi)(xm3)+4293w(vi)(xm2)+15619w(vi)(xm1)+15619w(vi)(xm)+4293w(vi)(xm+1)+247w(vi)(xm+2)+w(vi)(xm+3)=20160h6(H(xm4)5H(xm3)+9H(xm2)5H(xm1)5H(xm)+9H(xm+1)5H(xm+2)+H(xm+3)) (5.11) (5.12) w(vii)(xm4)+247w(vii)(xm3)+4293w(vii)(xm2)+15619w(vii)(xm1)+15619w(vii)(xm)+4293w(vii)(xm+1)+247w(vii)(xm+2)+w(vii)(xm+3)=40320h7(H(xm4)+7H(xm3)21H(xm2)+35H(xm1)35H(xm)+21H(xm+1)7H(xm+2)+H(xm+3))(5.12)

Employing, H(x)=D(H(x)), H(x)=I(H(x)) and H(x+h)=E(H(x)), refer (Lucas, Citation1974; Fyfe, Citation1969), Equationequations (5.6)–Equation(5.12) can be expressed as: W(xm)=8h(E4119E31071E21225E1+1225I+1071E+119E2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm) W(xm)=56h2(E4+55E3+189E2245E1245I+189E+55E2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm) W(xm)=336h3(E423E3+9E2+95E195I9E+23E2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm) W(iv)(xm)=1680h4(E4+7E327E2+19E1+19I27E+7E2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm) W(v)(xm)=6720h5(E4+E3+9E225E1+25I9EE2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm) W(vi)(xm)=20160h6(E45E3+9E25E15I+9E5E2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm) W(vii)(xm)=40320h7(E4+7E321E2+35E135I+21E7E2+E3E4+247E3+4293E2+15619E1+15619I+4293E+247E2+E3)H(xm)

Let E=exp(hD) and expand them in the power of hD (5.13) W(xm)=H(xm)+11209600(h8H9(xm))11064448(h10H11(xm))+6912641766400(h12H13(xm))+O(h13)(5.13) (5.14) W(xm)=H(xm)1172800(h8H10(xm))+53193344(h10H12(xm))6914402944000(h12H14(xm))+O(h13) (5.14) (5.15) W(xm)=H(xm)130240(h6H9(xm))+157600(h8H11(xm))1354816(h10H13(xm))+1312939626496000(h12H15(xm))+O(h13) (5.15) W(iv)(xm)=H(4)(xm)+16048(h6H10(xm))134560(h8H12(xm))+135322240(h10H14(xm))691792529920(h12H16(xm))+O(h13) (5.16) (5.17) W(v)(xm)= H(5)(xm)+1720(h4H9(xm))13024(h6H11(xm))+134560(h8H13(xm))3115966720(h10H15(xm))+6913962649600(h12H17(xm))+O(h13) (5.17) (5.18) W(vi)(xm)=H(6)(xm)1240(h4H10(xm))+13024(h6H12(xm))157600(h8H14(xm)))+11774080(h10H16(xm)))+69111887948800(h12H18(xm))+O(h13) (5.18) (5.19) W(vii)(xm)=H(7)(xm)112(h2H9(xm))+1240(h4H11(xm))16048(h6H13(xm))+1172800(h8H15(xm))12661120(h10H17(xm))+1420911307674368000(h12H19(xm))+O(h13) (5.19)

Let us consider the error  e(x)=W(x)-H(x) and associte Equationequations (5.13)–Equation(5.19) in Equationequation (5.20) to obtain equation (5.21). Employing Taylor series expansion in Equationequation (5.20) (5.20) e(x+γh)=e(xm)+γhe(xm)+γ2h22e(xm)+γ3h36e(xm)+(5.20) (5.21) e(x+γh)=h9γ[3H92H9γ2(1021γ2+30γ4)]3628800h10H10γ2(2150γ2+42γ4)7257600+ h11H11γ(75+231γ2220γ4+66γ6)79833600+h12H12γ2(150231γ2+88γ4)191600640+O(h13) (5.21)

Where aγb.

The following theorem condenses the preceding results:

Theorem 5.3.

For sufficiently small h, the truncation error is O(h^9), where H(x) is the analytical solution and w(x) is the approximate solution of Equation(1.1) with boundary conditions. This reveals that the method has O(h^9) accuracy.

Theorem 5.4.

Refer (Kadalbajoo & Awasthi, Citation2008)

If drwdtr Q,r=0,1 (x,t)[a,b], the estimation of local error En+1 is given by En+1Q(Δt)3.

Theorem 5.5.

The global error estimate En+1 at (n+1)th time level with global truncation error En at the time of discretization can be expressed as: (5.22) En+1=m=1nEm(5.22)

Proof.

Applying norm for Equationequation (5.22) En+1=m=1nEm=1nEm=1nQ(Δt)3=Qn(Δt)3=Qn(Tn)(Δt)2 (5.23) En+1S(Δt)2=O(Δt)2(5.23) where S=QT.

Equations (5.21) and Equation(5.23) generate  w(x,t)W(x,t)=O(h9+(Δt)2)

6. Numerical computation

This section bears with the formulae and numerical computation of L2 and L  error norms and invariants I1, I2 and I3 invariants via four tests. L2=hm=0N|Wmwm|2 L=max|Wmwm| I1=-W dxhm=0Nw(xm,t) I2=-[W2+(Wx)2]dxhm=0N[w(xm,t)2+(wx(xm,t))2] I3=-[W3+3W2]dxhm=0N[w(xm,t)3+3(w(xm,t))2]

Example 1.

For β = 0 and λ = 1 in the governing BBMB Equationequation (1.1) with the initial condition w(x,0)=sech2(x4)  in the space domain [−10, 30] and the time domain [1, 4], the exact solution is w(x,t)=sech2(x4t3). (See Zarebna & Parvaz, Citation2020). Here w(x,t) stands for the soliton to single solitary wave of Equationequation (1.1). reports the  L2,L error norms at different values N and temporal status. also presents a comparison of the  L2 error norms, with many BBMB equations (Zarebnia & Parvaz, Citation2016, Citation2020). and report the invariants I1,I2 and I3 collocations with cubic Hermitian splines (Arora et al., Citation2020), for different values of N. represents the comparison I1,I2 and I3 invariants at different time levels by present method with existing results (Arora et al., Citation2020; Zarebnia & Parvaz, Citation2016). The result is found to be more accurate in present scheme. surf approximate and analytical solutions for time level t = 4, N = 100, Δt = 0.01, respectively. depicts a comparison of the approximate and analytical solutions at various time points for Δt = 0.01, N = 100. For clarity, we compare the approximate and exact solutions for Δt = 0.1 and N = 100 at time t = 2, 4, 6, and 8 in , respectively. represents the absolute error at different times for Δt = 0.01 and N = 900.

Figure 1. Solution of Example 1.

Figure 1. Solution of Example 1.

Figure 2. Comparison of numerical solution with analytic solution Example 1.

Figure 2. Comparison of numerical solution with analytic solution Example 1.

Figure 3. Individual study of exact and approximate solution Example 1.

Figure 3. Individual study of exact and approximate solution Example 1.

Figure 4. Numerical simulation of absolute error of Example 1.

Figure 4. Numerical simulation of absolute error of Example 1.

Figure 5. Numerical simulation of Example 2.

Figure 5. Numerical simulation of Example 2.

Table 2. L2,L are compared for Δt=0.01 of Example 1.

Table 3. Computation of I1,I2 and I3 invariants of Example 1 for Δt = 0.01.

Table 4. Comparison of I1,I2 and I3 invariants for Example 1 at N = 400 and Δt=0.01.

Table 5. Computation for L2,L error norms of Example-1  for N=500 and 1000 and Δt = 0.05.

Example 2.

Employ λ=1 and β=0  in the governing Equationequation (1.1) in the space domain [−10] and time domain [1, 5] with w(x,0)=e-x2 (Arora et al., Citation2020; Zarebna & Parvaz, Citation2020). The numerical solution is reported in with N = 100 and Δt=0.01 at spatial domain x=6,4, −2, 0,2,4,6. at time levels t=1,2,3, 4 and 5. For x=6,4, −2 and 0 all the numerical values are with negative sign and for  x=0,2,4 and 6 they are with positive sign as shown in . reports the approximate solution of present method with (Zarebna & Parvaz, Citation2020) at time levels t=1,4,7 and 10 at spatial domain x=5,0 and 5. reports the approximate result for t=1,2,3 and 4 at spatial domain x=8.4,0, 4 and 8 with N = 500 and Δt=0.01. For node x=8 and4  all the approximate results are with negative sign and for node  x=0,4 and 8 they are with positive sign as displayed in depicts the approximate results for N = 500 with Δt=0.05  at time levels t=1,2,3,4,5,6,7,8,9 and 1. For more visibility, the numerical solutions with  Δt=0.01 and N = 400 at t=2,4,6,8 are surfed in respectively.

Figure 6. 3-D solution profile of individual numerical solution of Example 2.

Figure 6. 3-D solution profile of individual numerical solution of Example 2.

Table 6. Numerical computation of soliton of Example 2 with N = 300 and Δt=0.01.

Table 7. Comparison of approximate soliton for Example 2 with N = 300 and Δt=0.01 with (Zarebna & Parvaz, Citation2020).

Table 8. Computational approach of Example 2.

Example 3.

Consider the problem in the in the spatial domain [−40, 60] and t20 with β=0 and λ=1 in the governing Equationequation (1.1). The exact solution (Arora et al., Citation2020) is given by w(x,t)=3csech2[φ(xδt)]. Where φ=12c/δ, and wave velocity δ=1+c. reports the L2 and L error norms for N = 100, 500 and 1000 respectively at time levels t = 2, 4, 6, 8 and 10 with c=0.1. studies the I1,I2 and I3 invariants at t = 2, 4, 6, 8 for shake of Zarebnia and Parvaz (Citation2016), Gardner et al. (Citation1995] and Al-Khaled et al. (Citation2005) with c=0.1 .Table 11 executes the comparative study of L2,L by Zarebnia and Parvaz (Citation2016), Arora et al. (Citation2014), Gardner et al. (Citation1995), Kutluay and Esen (Citation2006), and Arora et al. (Citation2020) with present method for N = 100 and Δt=0.01 and c=101. The results are found to be more accurate in present scheme. surf the numerical and exact solution with  Δt = 0. 01 and N = 100 at t = 6 respectively. depicts comparative study of approximate and exact results at time levels t = 2, 4,6,8 and 10 for N = 100 and Δt=0.01.

Figure 7. 3D surf plot for numerical and analytic solution of Example 3.

Figure 7. 3D surf plot for numerical and analytic solution of Example 3.

Figure 8. Comparative study of exact and numerical results Example 3.

Figure 8. Comparative study of exact and numerical results Example 3.

Table 9. Error norms for Example 3 with different spatial and time domain.

Table 10. Comparison of I1 I2 and I3 invariants of Example 3 for N=100,Δt=0.01 at c = 0.1.

Table 11. Comparison of L2, L error norms of  Example 3 with N = 100 and Δt=0.01 with c=. 101

Example 4.

Consider the non-homogeneous BBMB equation

wtwxxtβwxx+λwx+wwx=et(cosxsinx+12etsin2x). For β=λ=1 the exact solution is w(x,t)=etsinx in the interval [0, π] and N = 121 (Arora et al., Citation2020; Zarebna & Parvaz, Citation2020). reports the comparison of L2,L error norms by Arora et al. (Citation2014) and Arora et al. (Citation2020) with present method for N = 121 and N = 140 respectively with Δt=0.01 in [0, π] at different times t = 1, 2,4 and 10. The results are found to be more accurate in present scheme. The distinguish on numerical solution with analytical at different times t = 0, 1,2,3 and 4 in [0, π] for N = 121 with Δt=0.01 is plotted in .

Figure 9. Brief analysis of approximate and exact soliton of Example 4.

Figure 9. Brief analysis of approximate and exact soliton of Example 4.

Table 12. Computational error norms of present method with others of Example 3 at Δt=0.01 in [0, π].

7. Conclusions

Higher-order B-spline collocation (BSC) is coupled with the Crank-Nicolson scheme to obtain numerical solition of BBMB equation.The higher-order sparse banded matrix and derivatives of higher degree act as catalyst for better improvement approximate soliton of BBMB in the present situation. The robustness of the current method is justified by employing four tests for numerical simulation of L2 and L error norms and conservative constants like I1, I2 and I3 invariants. The obtained results are also compared and found to be better to existing and closer to exact result. The unconditional stability is established by Fourier mode and convergence order of O(h9+(Δt)2) accuracy in space and time is well derived for present scheme with the application of three difference operators and Taylor series method. The proposed algorithm may be utilized for other nonlinear PDEs in physical sciences.

Acknowledgements

The authors would like to thank the anonymous referees, Managing Editor and Editor in Chief for their valuable suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Abbasbandy, S., & Shirzadi, A. (2010). The first integral method for modified Benjamin–Bona–Mahony equation. Communications in Nonlinear Science and Numerical Simulation, 15(7), 1759–1764. doi:10.1016/j.cnsns.2009.08.003
  • Al-Jawary, M. A., Radhi, G. H., & Ravnik, J. (2018). Daftardar-Jafari method for solving nonlinear thin film flow problem. Arab Journal of Basic and Applied Sciences, 25(1), 20–27. doi:10.1080/25765299.2018.1449345
  • Al-Khaled, K., Momani, S., & Alawneh, A. (2005). Approximate wave solutions for generalized Benjamin-Bona-Mahony-Burgers equations. Applied Mathematics and Computation, 171, 281–292. doi:10.1016/j.amc.2005.01.056
  • Arora, G., Mittal, R. C., & Singh, B. K. (2014). Numerical solution of BBM-Burger equation with quartic B-spline collocation method. Journal of Engineering Science and Technology, 9, 104–116.
  • Arora, S., Jain, R., & Kukreja, V. K. (2020). Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines. Applied Numerical Mathematics, 154, 1–16. doi:10.1016/j.apnum.2020.03.015
  • Arqub, O. A. (2019). Computational algorithm for solving singular Fredholm time-fractional partial integrodifferential equations with error estimates. Journal of Applied Mathematics and Computing, 59(1-2), 227–243.
  • Arqub, O. A. (2019). Numerical algorithm for the solutions of fractional order systems of dirichlet function types with comparative analysis. Fundamenta Informaticae, 166(2), 111–137.
  • Barenblatt, G. I., Zheltov, I. P., & Kochina, I. N. (1960). Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. Journal of Applied Mathematics and Mechanics, 24(5), 1286–1303. doi:10.1016/0021-8928(60)90107-6
  • Bayarassou, K. (2019). Fourth-order accurate difference schemes for solving Benjamin–Bona–Mahony–Burgers (BBMB) equation. Engineering with Computers, 37(1), 1–16.
  • Bo, W. B., Wang, R. R., Fang, Y., Wang, Y. Y., & Dai, C. Q. (2023). Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dynamics, 111, 1577–1588. doi:10.1007/s11071-022-07884-8
  • Boor, C. D. (1968). On the convergence of odd degree spline interpolation. Journal of Approximation Theory, 1(4), 452–463.
  • Casas, F. (1996). Solution of linear partial differential equations by Lie algebraic methods. The Journal of Computational and Applied Mathematics. 76(1-2), 159–170.
  • Chen, P. J., & Gurtin, M. E. (1968). On a theory of heat conduction involving two temperatures. Zeitschrift fur Angewandte Mathematik und Physik. 19(4), 614–627. doi:10.1007/BF01594969
  • Dehghan, M., & Abbaszadeh, M. (2015). The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. The Journal of Computational and Applied Mathematics. 286, 211–231. Mohebbi, doi:10.1016/j.cam.2015.03.012
  • Dehghan, M., Abbaszadeh, M., & Mohebbi, A. (2014). The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Computers & Mathematics with Applications, 68(3), 212–237. doi:10.1016/j.camwa.2014.05.019
  • Dehghan, M., Shafieeabyaneh, N., & Abbaszadeh, M. (2021). Numerical and theoretical discussions for solving nonlinear generalized Benjamin–Bona–Mahony–Burgers equation based on the Legendre spectral element method. Numerical Methods for Partial Differential Equations, 37(1), 360–382. doi:10.1002/num.22531
  • Fakhari, A., & Domairry, G. (2007). Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Physics Letters A, 368(1–2), 64–68. doi:10.1016/j.physleta.2007.03.062
  • Fang, J. J., Mou, D. S., Zhang, H. C., & Wang, Y. Y. (2021). Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik, 228, 166–186. doi:10.1016/j.ijleo.2020.166186
  • Fang, Y., Wu, G. Z., Wen, X. K., Wang, Y. Y., & Dai, C. Q. (2022). Predicting certain vector optical solitons via the conservation-law deep-learning method. Optics & Laser Technology. 155, 108428. doi:10.1016/j.optlastec.2022.108428
  • Fyfe, D. J. (1969). The use of cubic splines in the solution of two-point boundary value problems. Computer Journal, 12(2), 188–192. doi:10.1093/comjnl/12.2.188
  • Ganji, Z. Z., Ganji, D. D., & Bararnia, H. (2009). Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method. Applied Mathematical Modelling, 33(4), 1836–1841. doi:10.1016/j.apm.2008.03.005
  • Gardner, L. R. T., Gardner, G. A., & Dag, I. A. (1995). B-spline finite element method for the regularized long wave equation. Communications in Numerical Methods in Engineering, 11, 59–68. doi:10.1002/cnm.1640110109
  • Gebremedhin, G. S., & Jena, S. R. (2020). Approximate of solution of a fourth order ordinary differential equations via tenth step block method. International Journal of Computing Science and Mathematics. 11(3), 253–262. doi:10.1504/IJCSM.2020.10028216
  • Geng, K. L., Mou, D. S., & Dai, C. Q. (2023). Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations. Nonlinear Dynamics. 111, 603–617. doi:10.1007/s11071-022-07833-5
  • Hossen, M. B., Roshid, H. O., & Ali, M. Z. (2018). Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2 + 1)-dimensional Breaking Soliton equation. Physics Letters A, 382(19), 1268–1274. doi:10.1016/j.physleta.2018.03.016
  • Hossen, M. B., Roshid, H. O., & Ali, M. Z. (2019). Multi-soliton, breathers, lumps and interaction solution to the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Heliyon, 5(10), E02548. doi:10.1016/j.heliyon.2019.e02548
  • Hussain, A., Bano, S., Khan, I., Baleanu, D., & Sooppy Nisar, K. (2020). Lie symmetry analysis, explicit solutions and conservation laws of a spatially two-dimensional Burgers–Huxley equation. Symmetry, 12(1), 170. doi:10.3390/sym12010170
  • Jena, S. R., & Gebremedhin, G. S. (2020). Approximate solution of a fifth order ordinary differential equations with block method. International Journal of Computing Science and Mathematics, 12(4), 413–426. doi:10.1504/IJCSM.2020.112652
  • Jena, S. R., & Gebremedhin, G. S. (2021a). Decatic B-spline collocation scheme for approximate solution of Burgers’ equation. Numerical Methods for Partial Differential Equations, doi:10.1002/num.22747
  • Jena, S. R., & Gebremedhin, G. S. (2021b). Computational technique for heat and advection–diffusion equations. Soft Computing, 25(16), 11139–11150. doi:10.1007/s00500-021-05859-2
  • Jena, S. R., & Gebremedhin, G. S. (2021c). Numerical treatment of Kuramoto-Sivashinsky equation on B-spline collocation. Arab Journal of Basic and Applied Sciences, 28(1), 283–291.
  • Jena, S. R, & Gebremedhin, G. S. (2022). Octic B-spline collocation scheme for numerical investigation of fifth order boundary value problems. International Journal of Applied and Computational Mathematics, 8(5), 241. doi:10.1007/s40819-022-01437-8
  • Jena, S. R., & Gebremedhin, G. S. (2023). Computational algorithm for MRLW equation using B-spline with BFRK scheme. Soft Computing, 1–16. doi:10.1007/s00500-023-07849-y
  • Jena, S. R., Mohanty, M., & Misra, S. K. (2018). Ninth step block method for numerical solution of fourth order ordinary differential equation. Advances in Modelling and Analysis A, 55(2), 45–56.
  • Jena, S. R., Naya, K., & Acharya, M., M. (2017). Application of mixed quadrature rule on electromagnetic field problems. Mathematical Modelling and Analysis, 28, 267–277. doi:10.1007/s10598-017-9363-4
  • Jena, S. R., Senapati, A., & Gebremedhin, G. S. (2020a). Approximate solution of MRLW equation in B-Spline environment. Mathematical Sciences, 14(3), 345–357. doi:10.1007/s40096-020-00345-6
  • Jena, S. R., Senapati, A., & Gebremedhin, G. S. (2020b). Numerical study of solitons in BFRK scheme. International Journal of Mechanics and Control, 21(2), 163–175.
  • Kadalbajoo, M. K., & Awasthi, A. (2008). Crank–Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection–diffusion equations. International Journal of Computer Mathematics, 85(5), 771–790. doi:10.1080/00207160701459672
  • Kukreja, V. K. (2022). Numerical treatment of Benjamin-Bona-Mahony-Burgers equation with fourth-order improvised B-spline collocation method. Journal of Ocean Engineering and Science, 7(2), 99–111. doi:10.1016/j.joes.2021.07.001
  • Kumar, R., & Baskar, S. (2016). B-spline quasi-interpolation based numerical methods for some Sobolev type equations. The Journal of Computational and Applied Mathematics. 292, 41–66. doi:10.1016/j.cam.2015.06.015
  • Kumar, V., Gupta, R. K., & Jiwari, R. (2013). Painlevé Analysis, Lie Symmetries and Exact Solutions for Variable Coefficients Benjamin—Bona—Mahony—Burger (BBMB) Equation. Communications in Theoretical Physics, 60(2), 175. doi:10.1088/0253-6102/60/2/06
  • Kumari, A., & Kukreja, V. K. (2022). Sixth orderi Hermite collocation method for analysis of MRLW equation. Journal of Ocean Engineering and Science, Available online 24 June
  • Kutluay, S., & Esen, A. (2006). A finite difference solution of the regularized long-wave equation. Mathematical Problems in Engineering, 2006(1), 1–14. doi:10.1155/MPE/2006/85743
  • Lakestani, M., & Dehghan, M. (2012). Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Applied Mathematical Modelling, 36(2), 605–617. doi:10.1016/j.apm.2011.07.028
  • Lucas, T., R. (1974). Error bounds for interpolating cubic splines under various end conditions. SIAM Journal on Numerical Analysis. 11(3), 569–584. doi:10.1137/0711049
  • Mittal, A. K., Balyan, L. K., & Tiger, D. (2018). Numerical solution of Benjamin-Bona-MahonyBurger (BBMB) and regularized long-wave (RLW) equations using time-space pseudo-spectral method. Journal of Physics: Conference Series. 1039(1), 012002. doi:10.1088/1742-6596/1039/1/012002
  • Mohanty, M., & Jena, S. R. (2018). Differential transformation method (DTM) for approximate solution of ordinary differential equation (ODE). Advances in Modelling and Analysis B, 61(3), 135–138. doi:10.18280/ama_b.610305
  • Mohanty, M., Jena, S. R., & Misra, S. K. (2021a). Approximate solution of fourth order differential equation. Advances in Mathematics: Scientific Journal, 10(1), 621–628. doi:10.37418/amsj.10.1.62
  • Mohanty, M., Jena, S. R., & Misra, S. K. (2021b). Mathematical modelling in engineering with integral transforms via modified Adomian decomposition method. Mathematical Modelling of Engineering Problems, 8(3), 409–417. doi:10.18280/mmep.080310
  • Omrani, K., & Ayadi, M. (2008). Finite difference discretization of the Benjamin-Bona-Mahony-Burgers equation. Numerical Methods for Partial Differential Equations, 24(1), 239–248. doi:10.1002/num.20256
  • Oruç, O. (2017). A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Computers & Mathematics with Applications, 74(12), 3042–3057. doi:10.1016/j.camwa.2017.07.046
  • Peregrine, D. H. (1966). Calculations of the development of an undular bore. Journal of Fluid Mechanics, 25(2), 321–330. doi:10.1017/S0022112066001678
  • Senapati, A., & Jena, S. R. (2022). A computational scheme for fifth order boundary value problems. International Journal of Information Technology, 14(3), 1397–1404. doi:10.1007/s41870-022-00871-7
  • Senapati, A., & Jena, S. R. (2023). Generalized Rosenau-RLW equation in B-spline scheme via BFRK approach. Nonlinear Studies, 30(1), 73–85.
  • Shallal, M. A., Ali, K. K., Raslan, K. R., & Taqi, A. H. (2019). Septic B-spline collocation method for numerical solution of the coupled Burgers’ equations. Arab Journal of Basic and Applied Sciences, 26(1), 331–341. doi:10.1080/25765299.2019.1628687
  • Shallu & Kukreja, V. K. (2021). An improvised collocation algorithm with specific end conditions for solving modified Burgers equation. Numerical Methods for Partial Differential Equations, 37(1), 874–896. doi:10.1002/num.22557
  • Tari, H., & Ganji, D. D. (2007). Approximate explicit solutions of nonlinear BBMB equations by He’s methods and comparison with the exact solution. Physics Letters A, 367, 95–101. doi:10.1016/j.physleta.2007.02.085
  • Ting, T. W. (1963). Certain non-steady flows of second-order fluids. Archive for Rational Mechanics and Analysis, 14(1), 1–26. doi:10.1007/BF00250690
  • Wang, G. (2021a). A new (3 + 1)-dimensional Schrödinger equation: Derivation, soliton solutions and conservation laws. Nonlinear Dynamics. 104(2), 1595–1602. doi:10.1007/s11071-021-06359-6
  • Wang, G. (2021b). A novel (3 + 1)-dimensional sine-Gorden and a sinh-Gorden equation: Derivation, symmetries and conservation laws. Applied Mathematics Letters. 113, 106768. doi:10.1016/j.aml.2020.106768
  • Wang, G. (2021c). Symmetry analysis, analytical solutions and conservation laws of a generalized KdV–Burgers–Kuramoto equation and its fractional version. Fractals, 29(04), 2150101. doi:10.1142/S0218348X21501012
  • Wang, G., & Wazwaz, A. M. (2022a). A new (3 + 1)-dimensional KdV equation and mKdV equation with their corresponding fractional forms. FRACTALS (Fractals), 30(04), 1–8. doi:10.1142/S0218348X22500815
  • Wang, G., & Wazwaz, A. M. (2022b). On the modified Gardner type equation and its time fractional form. Chaos, Solitons & Fractals, 155, 111694. doi:10.1016/j.chaos.2021.111694
  • Wang, G., Yang, K., Gu, H., Guan, F., & Kara, A. H. (2020). A (2 + 1)-dimensional sine-Gordon and sinh-Gordon equations with symmetries and kink wave solutions. Nuclear Physics B. 953, 114956. doi:10.1016/j.nuclphysb.2020.114956
  • Wen, X. K., Wu, G. Z., Liu, W., & Dai, C. Q. (2022). Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dynamics, 109(4), 3041–3050. doi:10.1007/s11071-022-07583-4
  • Wen, X., Feng, R., Lin, J., Liu, W., Chen, F., & Yang, Q. (2021). Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik, 248, 168092. doi:10.1016/j.ijleo.2021.168092
  • Wu, H. Y., & Jiang, L. H. (2022). One-component and two-component Peregrine bump and integrated breather solutions for a partially nonlocal nonlinearity with a parabolic potential. Optik, 262, 169250. doi:10.1016/j.ijleo.2022.169250
  • Zarebna, M., & Parvaz, R. (2020). Error analysis of the numerical solution of the Benjamin-Bona-Mahony-Burgers equation. Boletim da Sociedade Paranaense de Matematica, 38(3), 177–191. doi:10.5269/bspm.v38i3.34498
  • Zarebnia, M., & Parvaz, R. (2016). On the numerical treatment and analysis of Benjamin–Bona–Mahony–Burgers equation. Journal of Applied Mathematics and Computing. 284, 79–88. doi:10.1016/j.amc.2016.02.037