570
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Interval valued Jensen’s inequalities for h-convex functions on time scales

, , &
Pages 341-353 | Received 26 Apr 2022, Accepted 06 May 2023, Published online: 31 May 2023

Abstract

In the paper, we study dynamic h-convexity for interval valued functions. Some generalizations of Jensen’s inequality in interval valued analysis for h-convex functions on time scales are proved in the paper. In seek of applications of generalized Jensen’s inequality, Hermite-Hadamard type inequalities for h-convex functions on time scales are established. Further discrete analogues of newly proved results are also presented in the paper. Some numerical examples are also provided to check the validity of the results.

1. Introduction

The theory of convex function has a long history and has been the subject of considerable research in mathematics for over a century. Convexity plays a significant part in social sciences, administration technology and theoretical development in science and current analysis. The revival of curiosity in convex functions and optimization in applied sciences and engineering can be backed down to the early 1980s. Throughout the centuries that followed, this investigation led in the emergence of convex function concept as a distinct topic of mathematical analysis.

The classical definition of convexity for a function ψ:LRR is ψ(wa1+(1w)a2)wψ(a1)+(1w)ψ(a2), where a1,a2L and w[0,1].

By using different methodologies, the research on convexity is being expanded day after day; see Awan, Noor, Noor, and Safdar (Citation2017). In optimization, economics, and nonlinear programming, substantially extended convexity is commonly employed. Convex functions have seen rapid generalizations and extensions in recent years; some extensions are included in Niculescu and Persson (Citation2006), Pečarić and Tong (Citation1992), and Zalinescu (Citation2002). Almost all fields of mathematics and other concerns of applied sciences and engineering employ inequalities as a mechanism. Jensen inequality is widely recognized in the domain of analysis and mathematics. It is named after Johan Jensen, a Danish mathematician. The Jensen type inequalities are not only used to get the majority of classical inequalities but also to predict the effects of environmental changes (Cabrerizo & Marañón, Citation2022; Ruel & Ayres, Citation1999). Developments in the Jensen type inequalities can be seen in Andrić (Citation2021) and Mughal, Almusawa, Haq, and Baloch (Citation2021). Some generalizations of the Jensen type inequalities with applications can be seen in Rodić (Citation2022). Inequalities of Jensen type for class of h-convex functions can be acquired in Lara, Merentes, and Nikodem (Citation2016).

In Sarikaya, Saglam, and Yildirim (Citation2008), Sarikaya et al. proved a variety of the Hermite-Hadamard inequality for functions which are h-convex. More extensions and refinements of the Hermite-Hadamard type inequalities for functions which are h-convex have been thoroughly analyzed in Dragomir (Citation2015) and Noor, Noor, and Awan (Citation2015). An application of Hermite Hadamard inequality for elastic torsion problem can be found in Dragomir and Keady (Citation1998). Moreover, applications of Hermite Hadamard type inequalities to f-divergence measures as well as to some special means of real numbers and estimates for the error term of trapezoidal formula are given in Khan, Ali, and Khan (Citation2017). Stefan Hilger established the time scales calculus in his PhD thesis 1988 (Hilger, Citation1990), by demonstrating ways to bring together discrete-time and continuous-time dynamical networks. Several scholars are currently interested in the calculus of time scales, which is helpful in developing theory and methodologies in biology (see, e.g. Bohner & Warth, Citation2007). Delta and nabla calculi are fundamental approaches to study time scales theory. Sheng, Fadag, Henderson, and Davis (Citation2006) introduced the diamond alpha calculus by combining delta and nabla calculi. Agarwal et al. drove Jensen type inequality in Agarwal, Bohner, and Peterson (Citation2001) with the help of delta integrals on time scales. In case of diamond-α integrals Jensen type inequality is studied in Ammi, Ferreira, and Torres (Citation2008). In particular, for α=12, it has the following form:

Theorem 1.1.

(Jensen’s inequality) Assume that u1,u2T and u3,u4R. Imagine ψ:[u1,u2](u3,u4) is right dense continuous and Φ:(u3,u4)R is convex. Then Φ(u1u2ψ(ν)12νu2u1)u1u2Φ(ψ(ν))12νu2u1.

Middle point Hermite-Hadamard inequality given in Dinu (Citation2008, 5.1) is the following:

Suppose T is a time scale and u,vT. Assume that ϕ:[u,v]R is a continuous convex function. Then, (1) ϕ(u+v2)1vuuvϕ(ν)12νϕ(u)+ϕ(v)2.(1)

Hermite Hadamard type inequality on time scales can be seen in Mohammed, Ryoo, Kashuri, Hamed, and Abualnaja (Citation2021).

The background of interval analysis might be linked all the way return to Archimedes’ calculation of the circle’s circumference. It was mostly neglected for quite some time due to deficiency of applications in various fields. Significant work in this field did not appear until 1950s. R. E. Moore’s acclaimed work (Moore, Citation1996) was the first textbook on interval analysis.

Many research publications in interval analysis are based on the presentation of an uncertain variable as an interval (Gallego-Posada & Puerta-Yepes, Citation2018; Markov, Citation1979; Yadav, Bhurjee, Karmakar, & Dikshit, Citation2017). Further, a thorough examination of different interval valued inequalities can be found in An, Ye, Zhao, and Liu (Citation2019), Guo, Ye, Zhao, and Liu (Citation2019), Liu, Ye, Zhao, and Liu (Citation2019), and Younus, Asif, and Farhad (Citation2015).

Recently, Jensen’s and Hermite Hadamard type inequalities for interval valued functions can be seen in Khan, Srivastava, Mohammed, Nonlaopon, and Hamed (Citation2022).

The plan of paper is as follows: Sec. 2, consists of some basic information about interval valued arithmetics, Riemann integrable function, Riemann delta integral for interval valued functions, diamond alpha derivatives integrals and dynamic h-convexity for interval valued functions. In Sec. 3, we proved interval valued Jensen’s inequalities for h-convex functions on time scales. We apply obtained inequality for h-convex functions to produce interval valued Hermite-Hadamard inequality for h-convex functions on time scales. Further many examples are provided to check the validity of results. Finally concluding remark of the paper is given in Sec. 4.

2. Preliminaries

2.1. Interval valued arithmetics

The following arithmetics are chosen from Markov (Citation1979) and Stefanini (Citation2010).

Assume that KC={[a1,a2]:a1,a2R}.

For [p1¯,p1¯],[q1¯,q1¯]KC, [p1¯,p1¯]+[q1¯,q1¯]=[p1¯+q1¯,p1¯+q1¯] and k[p1¯,p1¯]={[kp1¯,kp1¯] if k>0,{0} if k=0,[kp1¯,kp1¯] if k<0,} respectively. By definition, we get kP1=P1k kR. Moreover, [p1¯,p1¯]ψ[q1¯,q1¯]=[min{p1¯q1¯,p1¯q1¯},max{p1¯q1¯,p1¯q1¯}], where ψ is called gH-difference.

For P1=[p1¯,p1¯]KC, width of P1 is referred as ω(P1)=p1¯p1¯. By using ω(.), we can write P1ψQ1={[p1¯q1¯,p1¯q1¯],if ω(P1)ω(Q1),[p1¯q1¯,p1¯q1¯],if ω(P1)<ω(Q1).}

More explicitly, for P1, Q1,C kC, we have P1ψQ1=C{P1=Q1+C,ω(P1)ω(Q1),Q1=P1+(C),ω(P1)<ω(Q1).}

Since KC is not totally order set (e.g. see Chalco-Cano, Flores-Franulič, & Román-Flores, Citation2012; Markov, Citation1979; Moore, Citation1979; Younus et al., Citation2015). For P1,Q1KC, such that P1=[P1¯,P1¯], Q1=[Q1¯,Q1¯], we say that:

  1. P1LUQ1( or P1LRQ1),P1¯Q1¯ and P1¯Q1¯,P1LUQ1 if P1LUQ1 and P1Q1.

  2. P1LCQ1P1¯Q1¯ and P1LCQ1P1¯Q1¯ if P1LCQ1 and P1Q1, where m(P1)=P1¯+P1¯2.

  3. P1UCQ1P1¯Q1¯ and m(P1)m(Q1),P1UCQ1 if P1UCQ1 and P1Q1.

  4. P1CWQ1m(P1)m(Q1) and w(P1)w(Q1),P1CWQ1 if P1CWQ1 if P1CWQ1 and P1Q1, where ω(P1)=P1¯P1¯.

  5. P1LWQ1P1¯Q1¯ and w(P1)w(Q1),P1LWQ1 if P1LWQ1 and P1Q1.

  6. P1UWQ1P1¯Q1¯ and w(P1)w(Q1),P1UWQ1 if P1UWQ1 and P1Q1.

Assume that V*={LU,LC,UC,CW,LW,UW} be the collection of these partial orders on KC. The following results include some of the properties of these partial orders.

Lemma 2.1.

Assume that V1*={LU,LC,UC,CW,UW}. If P1LWQ1, then P1*Q1 *P1.

Lemma 2.2.

Assume that V2*={UC,UW}. If P1CWQ1, then P1*Q1 *P2.

Lemma 2.3.

Assume that P1, Q1, C KC. If P1LWQ1 and ω(P1)ω(C), then P1ψCLWQ1ψC.

Lemma 2.4.

If P1LUQ1, then P1LCQ1 and UCQ1.

Lemma 2.5.

If P1CWQ1, then P1UCQ1 and UWQ1.

Lemma 2.6.

If P1UWQ1, then P1UCQ1.

Notations: RI denotes the collection of all intervals of R. RI+ denotes the collection of all positive intervals of R and RI denotes the collection of all negative intervals of R.

Riemann integrable function (Zhao, An, Ye, & Liu, Citation2018)

Let D* be any finite ordered subset of [a1,a2] obtained by division of [a1,a2] having pattern D*={a1=w0<w1<<wn1=a2}.

A division’s mesh represents subintervals of maximum length that make up D*, i.e. mesh(D*)=max{wjwj1:j=1,2,,n1}.

Suppose that M(δ,[a1,a2]) is the collection of all D*M([a1,a2]) for which mesh(D*)<δ. In every interval [wj1,wj],1jn1, select any point ξj, makes the sum S(ϕ,D*,δ)=j=1n1ϕ(ξj)(wjwj1), where ϕ:[a1,a2]R (or RI). S(ϕ,D*,δ) is known as Riemann sum of ϕ related to D*M(δ,[a1,a2]).

Definition 2.7

(Dinghas, Citation1956). A function ϕ:[a1,a2]R is known as Riemann integrable (R-integrable) on [a1,a2] if B R for every ϵ>0, there is δ>0 for which |S(ϕ,M,δ)B|<ε for each Riemann sum S of ϕ is in D*M(δ,[a1,a2]) and independent of the option of ξj[wj1,wj] for 1jn1. Here B is known as R-integral of ϕ on [a1,a2] and is defined as B=(R)a1a2ϕ(w)dw. The bunch of all R-integrable functions on [a1,a2] are indicated by R([a1,a2]).

Interval valued Riemann integrable function

Definition 2.8

(Zhao et al., Citation2018). A function ϕ:[a1,a2]RI is known as interval Riemann integrable (IR-integrable) on [a1,a2] if there is B RI, for all ϵ>0, there exist δ>0 for which d(S(ϕ,M,δ),B)<ε for every Riemann sum S of ϕ related to each D*M(δ,[a1,a2]) and independent of the option of ξj[wj1,wj] for 1jn1. Where, B is known as the IR-integral of ϕ on [a1,a2] and is defined as B=(IR)a1a2ϕ(w)dw. The bunch of all IR-integrable functions on [a1,a2] is indicated by IR([a1,a2]).

Riemann delta integral for interval valued functions

Definition 2.9

(Zhao et al., Citation2018). A function η:[a1,a2]TRI is known as IR Δintegrable on [a1,a2]T if an BRI,ε>0 δ>0 for which d(S(η,M,δ),B)<ε

D*M(δ,[a1,a2]T). In this situation, B is known as the IR Δintegral of η on [a1,a2]T and is indicated as B=(IR)a1a2η(w)Δw. The collection of all IR Δintegrable functions on [a1,a2]T is indicated as IR(Δ,[a1,a2]T).

Theorem 2.10

(Zhao, Ye, Liu, & Torres, Citation2019). If ηC([u1,u2]T,RI), then ηIR(Δ,[u1,u2)T) and (2) (IR)u1u2η(χ)Δχ=[u1u2η¯(χ)Δχ,u1u2η¯(χ)Δχ].(2)

Theorem 2.11

(Zhao et al., Citation2019). Suppose that ζ1,ζ2IR(Δ,[u1,u2]T), and α is any real number, then

  1. αζ1IR(Δ,[u1,u2]T) and (IR)u1u2αζ1(τ)Δτ=α(IR)u1u2ζ1(τ)Δτ;

  2. ζ1+ζ2IR(Δ,[u1,u2]T) and (IR)u1u2(ζ1(χ)+ζ2(χ))Δχ=(IR)u1u2ζ1(χ)Δχ+(IR)u1u2ζ2(χ)Δχ;

  3. For a3[u1,u2]T and u1<a3<u2, (IR)u1a3ζ1(χ)Δχ+(IR)a3u2ζ1(χ)Δχ=(IR)u1u2ζ1(χ)Δχ;

  4. If ζ1g on [u1,u2]T, then (IR)u1u2ζ1(τ)Δτ(IR)u1u2ζ2(τ)Δτ.

2.2. Arithmetics of diamond alpha derivative and integral

Let T be a time scale. If T has a right-scattered minimum m, then define Tk=Tm; otherwise Tk=T. If T has a left-scattered maximum M, then define Tk=TM; otherwise Tk=T. Finally, put Tkk=TkTk and for s, t Tkk, denote μts=σ(t)s, and νts=ρ(t)s.

One defines the diamond-α dynamic derivation (Sheng et al., Citation2006) of a function f:TR at t to be the number denoted by ζ1α(t) (when it exist), with the property that, for any ε>0, there is a neighbourhood U of t such that for all sU (3) |α[ζ1(σ(t))ζ1(s)]νts+(1α)[ζ1(ρ(t)ζ1(s)]μtsζ1α(t)μtsνts|<εμtsνts.(3)

A function is called diamond-α differentiable on Tkk if ζ1α(τ) exists for all τTkk.

Moreover if ζ1:TR is differentiable on T in the sense of Δ and , then ζ1 is diamond-α differentiable at τTkk, and the diamond-α derivative for 0α1 is given by (4) ζ1α(τ)=αζ1Δ(τ)+(1α)ζ1(τ).(4)

We present here some properties of diamond-α derivative (Sheng et al., Citation2006). For that ζ1,ζ2:TR be diamond-α differentiable at τT. Then, for 0α1

  • ζ1+ζ2:TR is diamond-α differentiable at τT (ζ1+ζ2)α(τ)=ζ1α(τ)+ζ2α(τ);

  • If c R and cζ1:TR is diamond-α differentiable at τT and (cζ1)α(τ)=cζ1α(τ);

  • ζ1ζ2:TR (ζ1ζ2)α(τ)=ζ1α(τ)ζ2(τ)+αζ1σ(τ)ζ2Δ(τ)+(1α)ζ1ρ(τ)ζ2(τ).

Let a, b T and ζ1:TR. The diamond-α integral of ζ1 from a to b is defined by (5) abζ1(τ)ατ=αabζ1(τ)Δτ+(1α)abζ1(τ)τ,(5)

For α=12, Equation(4) and Equation(5) are symmetric derivative and symmetric integral (respectively) involving delta and nabla derivativesintegrals. The present study is restricted to use of diamond-12 derivative or integral.

Similar to Theorem 2.10, one can define interval valued nabla integral in the form:

Theorem 2.12.

If ηC((u1,u2]T,RI), then ηIR(,[u1,u2]T) and (6) (IR)u1u2η(χ)χ=[u1u2η¯(χ)χ,u1u2η¯(χ)χ].(6)

Theorem 2.10 together with Theorem 2.12 gives us the following result:

Theorem 2.13.

If ηC([u1,u2]T,RI), then ηIR(12,[u1,u2]T) and (7) (IR)u1u2η(χ)12χ=[u1u2η¯(χ)12χ,u1u2η¯(χ)12χ].(7)

Proof.

Divide Equation(2) and Equation(6) by 2 and add the resultants to get Equation(7). □

Remark 2.14.

Theorem 2.11 remains valid if we replace delta with nabla or diamond-12 integrals.

Example 2.15.

Let T=[1,0]3N°, be a time scale and N0 is the collection of positive integers including zero. Suppose that η:[u1,u2]TRI is characterized by η(Λ)={[Λ,Λ2+1],if Λ3N0,[Λ,Λ+1],if Λ[1,0),[1,2],if Λ=0.}

If [u1,u2]T=[1,3]T, then (IR)13ϕ(Λ)ΔΛ=[13η¯(Λ)ΔΛ,13η¯(Λ)ΔΛ]=[10ΛdΛ+01ΔΛ+13ΛΔΛ,10(Λ+1)dΛ+012ΔΛ+13(Λ2+1)ΔΛ]=[12Λ2|10+1+2Λ2|1,12Λ2+Λ|10+2+2Λ(Λ2+1)|1]=[212,612].(IR)13ϕ(Λ)Λ=[13(Λ)Λ,13η¯(Λ)Λ]=[10ΛdΛ+01ΛΛ+13ΛΛ,10(Λ+1)dΛ+01(Λ2+1)Λ+13(Λ2+1)Λ]=[12Λ2|10+1+2Λ2|1+2Λ2|3,(12Λ2+Λ)|10+2+2Λ(Λ2+1)|1+2Λ(Λ2+1)|3]=[2112,6612].

Hence 13ϕ(Λ)12Λ=1213ϕ(Λ)ΔΛ+1213ϕ(Λ)Λ=[1224,3624].

Remark 2.16.

Example 2.15 is given in Zhao et al. (Citation2019) for delta integral.

We use the following notations in the next section. Let I be any interval on R and IT=TI is interval on time scale.

Convex function on time scales

Definition 2.17.

A function ϕ:ITR is convex function on IT (Dinu, Citation2008), if (8) ϕ((1η)v+ηu)(1η)ϕ(v)+ηϕ(u),(8) v,uIT and all η[0,1] such that (1η)v+ηuIT. If the inequality (8) is strict for distinct v,uIT and η(0,1), then function ϕ is strictly convex on IT. If ϕ is convex, then function ϕ is said to be concave on IT. ϕ is affine on IT if it is both concave and convex on IT.

Note:

Next we provide some definitions of p-function, h-convex function, h-convex function for interval valued functions on time scales which are helpful to establish our main results in Sec. 3.

P-function on time scales

Definition 2.18.

A function ϕ:ITR is a P-function on time scale if ϕ is positive and v,uIT and ω[0,1], we get ϕ((1ω)v+ωu)ϕ(v)+ϕ(u).

h-Convexity on time scales

Definition 2.19.

Let h:JTR be a positive function, (0,1)JT and h(·)0. A function ϕ is in collection SX1(h,IT,R), or a function ϕ:ITR is known as h-convex function, if ϕ is positive and v,uIT and η(0,1) we get (9) ϕ((1η)v+ηu)h(1η)ϕ(v)+h(η)ϕ(u).(9)

A function ϕ is called h-concave if inequality (9) is reversed i.e. ϕSV1(h,IT,R).

3. Main results

In order to establish the main results, it needs to define h-convexity for interval valued functions on time scales.

3.1. h-Convexity for interval valued functions on time scales

Definition 3.1.

Suppose that h:JTR is a positive function such that (0,1)JT, and h(·)0. A function Λ is in collection SX1(h,IT,R) or a function [Λ¯(η),Λ¯(η)]:ITRI+ is known as h-convex function, if Λ is positive and v,uIT and η[0,1]T, we get (10) [h(1η)Λ¯(v)+h(η)Λ¯(u),h(1η)Λ¯(v)+h(η)Λ¯(u)][Λ¯((1η)v+ηu),Λ¯((1η)v+ηu)].(10)

A function Λ is called h-concave if set inclusion (10) is reversed.

Example 3.2.

Let IT=[a1,a2],  v,uIT,k<0. Define h(s)=sk,  s>0 and Λ(t)={[1,22kt]ta+b2[21k,22kt]t=a1+a22}. then Λ(·) is not convex interval valued function but h-convex interval valued function for t>12. For more simplicity, choose k=13,s=12,a1=1,a2=5, then when (1η)v+ηu=a1+a22 we get equality and when one of v or u is a1+a22 we get [4.22,3.66][1,42.66].

Notations. The set of all h-concave interval valued functions on time scales is indicated by SV1(h,IT,RI+). The collection of all h-convex interval valued functions is indicated by SX1(h,IT,RI+). The collection of all h-affine interval valued functions is indicated by SA1(h,IT,RI+).

3.2. Interval valued Jensen’s inequalities for h-convex functions on time scales

Theorem 3.3.

Suppose Φ:ITRI+ is interval valued function which is h-convex on time scales and Φ(ϱ)=[Φ¯(ϱ),Φ¯(ϱ)]. Then ΦSX1(h,IT,RI+) iff Φ¯SX1(h,IT,R+) and Φ¯SV1(h,IT,R+).

Proof.

Let ΦSX1(h,IT,RI+) and μ1,ν2IT,0<ϑ<1. Then h(1ϑ)Φ(ν2)+h(ϑ)Φ(μ1)Φ((1ϑ)ν2+ϑμ1), and (11) [h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1),h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1)][Φ¯(1ϑ)ν2+ϑμ1),Φ¯(1ϑ)ν2+ϑμ1)].(11)

It comes that h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1)Φ¯((1ϑ)ν2+ϑμ1), and h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1)Φ¯((1ϑ)ν2+ϑμ1).

This reveals that Φ¯SX1(h,IT,R+) and Φ¯SV1(h,IT,R+). Conversely, if Φ¯SX1(h,IT,R+) and Φ¯SV1(h,IT,R+), then from definition of P-function and set inclusion (11), one obtains ΦSX1(h,IT,RI+).

Example 3.4.

Let Φ(ϱ)=[ϱ2,100+ϱ],IT=[0,1]{3,32},JT={0,13,23,1} and h(η)=η, then Theorem 3.3 is satisfied.

Corollary 3.5.

If we choose time scale to be set of real numbers in Theorem 3.3, it becomes (Zhao et al., Citation2018, Theorem 3.7).

Theorem 3.6.

Suppose Φ:ITRI+ is interval valued function which is h-concave on time scales and Φ(ϑ)=[Φ¯(ϑ),Φ¯(ϑ)]. Then ΦSV1(h,IT,RI+) iff Φ¯SV1(h,IT,R+) and Φ¯SX1(h,IT,R+).

Proof.

Suppose that ΦSV1(h,IT,RI+) and μ1,ν2IT,0<ϑ<1. Then h(1ϑ)Φ(ν2)+h(ϑ)Φ(μ1)Φ((1ϑ)ν2+ϑμ1), and (12) [h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1),h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1)][Φ¯((1ϑ)ν2+ϑμ1),Φ¯((1ϑ)ν2+ϑμ1)].(12)

It comes that h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1)Φ¯((1ϑ)ν2+ϑμ1), and h(1ϑ)Φ¯(ν2)+h(ϑ)Φ¯(μ1)Φ¯((1ϑ)ν2+ϑμ1).

This reveals that Φ¯SV1(h,IT,R+) and Φ¯SX1(h,IT,R+). Conversely, if Φ¯SV1(h,IT,R+) and Φ¯SX1(h,IT,R+), then from definition of P-function and set inclusion (12), one obtains ΦSV1(h,IT,RI+).

Example 3.7.

Let IT=[a1,a2],k(0,1). Define h(s)=s2+k,  s>0 and Λ(t)={[21k,3+t]ta1+a22[2k,3+t]t=a1+a22}. then Λ(·) is not concave interval valued function but h-concave interval valued function.

Corollary 3.8.

If we choose time scale to be a set of real numbers in Theorem 3.6, it becomes (Zhao et al., Citation2018, Theorem 3.8).

3.3. Applications to interval valued Hermite Hadamard inequalities for h-convex functions

Theorem 3.9.

Suppose that Φ:TRI+ is a interval valued function which is h-convex and Φ(η)=[Φ¯(η),Φ¯(η)] and ΦIR([ζ,ϑ]), h(12)0,01h(η)12η12 and h:[0,1]R is a positive function. If ΦSX1(h,IT,RI+), then (13) 14[h(12)]2Φ(ζ+ϑ2)Δ11ϑζζϑΦ(ς1)12ς1Δ2[Φ(ζ)+Φ(ϑ)][12+h(12)]01h(η)12η,(13) where Δ1=14h(12)[Φ(3ζ+ϑ4)+Φ(ζ+3ϑ4)], and Δ2=[Φ(ζ)+Φ(ϑ)2+Φ(ζ+ϑ2)]01h(η)12η.

If ΦSV1(h,IT,RI+), then (14) 14[h(12)]2Φ(ζ+ϑ2)Δ11ϑζζϑΦ(ς1)12ς1Δ2[Φ(ζ)+Φ(ϑ)][12+h(12)]01h(η)12η.(14)

Proof.

We split interval [ζ,ϑ] into [ζ,ζ+ϑ2] and [ζ+ϑ2,ϑ]. Then for [ζ,ζ+ϑ2], we have (15) Φ(ζ+ζ+ϑ22)=Φ((1η)ζ+ϑ2+ηζ+ηζ+ϑ2+(1η)ζ2)h(12)[Φ((1η)ζ+ϑ2+ηζ)+Φ(ηζ+ϑ2+(1η)ζ)].(15)

Integration of the set inclusion (15) with respect to η on [0,1], gives (16) 14h(12)Φ(3ζ+ϑ4)1ϑζζζ+ϑ2Φ(ς1)12ς1.(16)

Now for [ζ+ϑ2,ϑ], we have (17) Φ(ζ+ϑ2+ϑ2)=Φ((1η)ϑ+ηζ+ϑ2+ηϑ+(1η)ζ+ϑ22)h(12)[Φ((1η)ϑ+ηζ+ϑ2)+Φ(ηϑ+(1η)ζ+ϑ2)].(17)

Integration of the set inclusion (17) with respect to η on [0,1], gives (18) 14h(12)Φ(ζ+3ϑ4)1ϑζζ+ϑ2ϑΦ(ς1)12ς1.(18)

By adding inclusions Equation(16) and Equation(18), one gets Δ1=14h(12)[Φ(3ζ+ϑ4)+Φ(ζ+3ϑ4)]1ϑζζϑΦ(ς1)12ς1=12[2ϑζζζ+ϑ2Φ(ϱ1)12ϱ1+2ϑζζ+ϑ2ϑΦ(ς1)12ς1].

By using (1) and 01h(η)12η12 Δ112[[Φ(ζ)+Φ(ζ+ϑ2)]01h(η)12η]+12[[Φ(ζ+ϑ2)+Φ(ϑ)]01h(η)12η]=12[{Φ(ζ)+Φ(ϑ)+2Φ(ζ+ϑ2)}01h(η)12η]=[Φ(ζ)+Φ(ϑ)2+Φ(ζ+ϑ2)]01h(η)12η=Δ2.

Now 14[h(12)]2Φ(ζ+ϑ2)=14[h(12)]2Φ[123ζ+ϑ4+12ζ+3ϑ4]14[h(12)]2[h(12){Φ(3ζ+ϑ4)+Φ(ζ+3ϑ4)}]=14[h(12)]{Φ(3ζ+ϑ4)+Φ(ζ+3ϑ4)}=Δ114[h(12)][h(12){Φ(ζ)+Φ(ζ+ϑ2)}+h(12){Φ(ζ+ϑ2)+Φ(ϑ)}]=14[h(12)][h(12){Φ(ζ)+Φ(ϑ)+2Φ(ζ+ϑ2)}]=14[Φ(ζ)+Φ(ϑ)+2Φ(ζ+ϑ2)]=12[Φ(ζ)+Φ(ϑ)2+Φ(ζ+ϑ2)][Φ(ζ)+Φ(ϑ)2+Φ(ζ+ϑ2)]01h(η)12η=Δ2[Φ(ζ)+Φ(ϑ)2+h(12)[Φ(ζ)+Φ(ϑ)]]01h(η)12η=[[Φ(ζ)+Φ(ϑ)]{12+h(12)}]01h(η)12η.

This completes the proof. □

Corollary 3.10.

If we choose time scale to be a set of real numbers in Theorem 3.9, it becomes (Zhao et al., Citation2018, Theorem 4.3).

Example 3.11.

Consider [ζ,ϑ]T=[0,2]. Assume that h(η)=η, η[0,1]T and Φ:[ζ,ϑ]T=[0,2]RRI+ be referred by Φ(ς1)=[ς12,10eς1] for all ς1[0,2]. We have 14[h(12)]2Φ(ζ+ϑ2)=[1,10e],Δ1=12[Φ(12),Φ(32)]=[54,10e+ee2],1ϑζζϑΦ(ς1)Δς1=[43,21e22],Δ2=12([2,19e22]+[1,10e])=[32,392ee24], and [Φ(ζ)+Φ(ϑ)][12+h(12)]01h(η)Δη=[2,19e22].

Then one gets [1,10e][54,10e+ee2][43,(e221)2][32,(e22e39)4][2,19e22].

Consequently, Theorem 3.9 is verified.

Corollary 3.12.

When T=α1N and ζ=α1,ϑ=(n+1)α1,α1>0 in Theorem 3.9, then set inclusions Equation(13) and Equation(14) turn into the following inclusions respectively, (19) 14[h(12)]2Φ(α1+(n+1)α12)Δ11n(l=2nΦ(lα1)+Φ(α1)+Φ((n+1)α1)2)Δ2[Φ(α1)+Φ((n+1)α1)][12+h(12)]1n(l=2nh(l1n)+h(0)+h(1)2).(19) (20) 14[h(12)]2Φ(α1+(n+1)α12)Δ11n(l=2nΦ(lα1)+Φ(α1)+Φ((n+1)α1)2)Δ2[Φ(α1)+Φ((n+1)α1)][12+h(12)]1n(l=2nh(l1n)+h(0)+h(1)2),(20) where Δ1=14h(12)[Φ(3α1+(n+1)α14)+Φ(α1+3(n+1)α14)], and Δ2=[Φ(α1)+Φ((n+1)α1)2+Φ(α1+(n+1)α12)]1n(l=2nh(l1n)+h(0)+h(1)2).

Example 3.13.

If we choose α1=1,n=4, h(t) = t and Φ(ς)=[ς,ς2] in Corollary 3.12, Equation(19) becomes (21) [1.732,9][1.7071,10][1.69,10.5][1.675,11][1.618,13].(21)

Theorem 3.14.

Let Φ,Ψ:IT=[ζ,ϑ]TRI+ be two interval valued functions which are h-convex with Φ(ϱ1)=[Φ¯(ϱ1),Φ¯(ϱ1)],Ψ(ϱ1)=[Ψ¯(ϱ1),Ψ¯(ϱ1)] and ΦΨIR([ζ,ϑ]T) and h1,h2:[0,1]TR are positive right dense continuous functions. If ΦSX1(h1,IT,RI+),ΨSX1(h2,IT,RI+), then (22) 1ϑζζϑΦ(ϱ1)Ψ(ϱ1)12ϱ1φ(ζ,ϑ)01h2(η)h1(η)12η+χ(ζ,ϑ)01h2(1η)h1(η)12η,(22) where φ(ζ,ϑ)=Φ(ζ)Ψ(ζ)+Φ(ϑ)Ψ(ϑ) and χ(ζ,ϑ)=Φ(ζ)Ψ(ϑ)+Φ(ϑ)Ψ(ζ).

Proof.

Since ΦSX1(h1,IT,RI+)[Φ¯,Φ¯]SX1(h1,IT,RI+) and ΨSX1(h2,IT,RI+)[Ψ¯,Ψ¯]SX1(h2,IT,RI+).

Therefore ζ,ϑIT,η(0,1)T, one has that Φ((1η)ϑ+ηζ)h1(1η)Φ(ϑ)+h1(η)Φ(ζ) and Ψ((1η)ϑ+ηζ)h2(1η)Ψ(ϑ)+h2(η)Ψ(ζ).

Which can be written as [Φ¯((1η)ϑ+ηζ),Φ¯((1η)ϑ+ηζ)][h1(1η)Φ¯(ϑ)+h1(η)Φ¯(ζ),h1(1η)Φ¯(ϑ)+h1(η)Φ¯(ζ)] and [Ψ¯((1η)ϑ+ηζ),Ψ¯((1η)ϑ+ηζ][h2(1η)Ψ¯(ϑ)+h2(η)Ψ¯(ζ),h2(1η)Ψ¯(ϑ)+h2(η)Ψ¯(ζ)].

Since Φ and Ψ are non-negative, therefore [Φ¯((1η)ϑ+ηζ),Φ¯(1η)ϑ+ηζ)][Ψ¯((1η)ϑ+ηζ),Ψ¯((1η)ϑ+ηζ)][h2(η)h1(η)Φ¯(ζ)Ψ¯(ζ),h2(η)h1(η)Φ¯(ζ)Ψ¯(ζ)]+[h2(1η)h1(η)Φ¯(ζ)Ψ¯(ϑ),h2(1η)h1(η)Φ¯(ζ)Ψ¯(ϑ)]+[h1(1η)h2(η)Φ¯(ϑ)Ψ¯(ζ),h1(1η)h2(η)Φ¯(ϑ)Ψ¯(ζ)]+[h2(1η)h1(1η)Φ¯(ϑ)Ψ¯(ϑ),h1(1η)h2(1η)Φ¯(ϑ)Ψ¯(ϑ)]. Integrating over [0,1]T, we get 01[Φ¯((1η)ϑ+ηζ),Φ¯((1η)ϑ+ηζ)][Ψ¯((1η)ϑ+ηζ),Ψ¯((1η)ϑ+ηζ)]12η[Φ¯(ζ)Ψ¯(ζ)01h1(η)h2(η)12η,Φ¯(ζ)Ψ¯(ζ)01h1(η)h2(η)12η]+[Φ¯(ζ)Ψ¯(ϑ)01h1(η)h2(1η)12η,Φ¯(ζ)Ψ¯(ϑ)01h1(η)h2(1η)12η] +[Φ¯(ϑ)Ψ¯(ζ)01h2(η)h1(1η)12η,Φ¯(ϑ)Ψ¯(ζ)01h2(η)h1(1η)12η]+[Φ¯(ϑ)Ψ¯(ϑ)01h1(1η)h2(1η)12η,Φ¯(ϑ)Ψ¯(ϑ)01h1(1η)h2(1η)12η].=[Φ¯(ζ)Ψ¯(ζ),Φ¯(ζ)Ψ¯(ζ)]01h1(η)h2(η)12η+[Φ¯(ϑ)Ψ¯(ϑ),Φ¯(ϑ)Ψ¯(ϑ)]01h1(η)h2(1η)12η+[Φ¯(ϑ)Ψ¯(ζ),Φ¯(ϑ)Ψ¯(ζ)]01h2(η)h1(1η)12η+[Φ¯(ϑ)Ψ¯(ϑ),Φ¯(ϑ)Ψ¯(ϑ)]01h1(1η)h2(1η)12η.=[Φ¯(ζ)Ψ¯(ζ)+Φ¯(ϑ)Ψ¯(ϑ),Φ¯(ζ)Ψ¯(ζ)+Φ¯(ϑ)Ψ¯(ϑ)]01h1(η)h2(η)12η+[Φ¯(ζ)Ψ¯(ϑ)+Φ¯(ϑ)Ψ¯(ζ),Φ¯(ζ)Ψ¯(ϑ)+Φ¯(ϑ)Ψ¯(ζ)]01h1(η)h2(1η)12η.=[Φ(ζ)Ψ(ζ)+Φ(ϑ)Ψ(ϑ)]01h1(η)h2(η)12η+[Φ(ζ)Ψ(ϑ)+Φ(ϑ)Ψ(ζ)]01h1(η)h2(1η)12η.

By using (1), [1ϑζζϑΦ¯(ϱ1)Ψ¯(ϱ1)12ϱ1,1ϑζζϑΦ¯(ϱ1)Ψ¯(ϱ1)12ϱ1]φ(ζ,ϑ)01h1(η)h2(η)12η+χ(ζ,ϑ)01h1(η)h2(1η)12η.1ϑζζϑΦ(ϱ1)Ψ(ϱ1)12ϱ1φ(ζ,ϑ)01h1(η)h2(η)12η+χ(ζ,ϑ)01h1(η)h2(1η)12η, where φ(ζ,ϑ)=Φ(ζ)Ψ(ζ)+Φ(ϑ)Ψ(ϑ) and χ(ζ,ϑ)=Φ(ζ)Ψ(ϑ)+Φ(ϑ)Ψ(ζ).

Corollary 3.15.

If we choose time scale to be set of real numbers in Theorem 3.14, it becomes (Zhao et al., Citation2018, Theorem 4.5).

Corollary 3.16.

When T=α1N and ζ=α1,ϑ=(n+1)α1,α1>0 in Theorem 3.14, set inclusion Equation(22) becomes l=2nΦ(lα1)Ψ(lα1)+Φ(α1)Ψ(α1)+Φ((n+1)α1)Ψ((n+1)α1)2φ(α1,(n+1)α1)l=2nh1(l1n)h2(l1n)+h1(0)h2(0)+h1(1)h2(1)2+χ(α1,(n+1)α1)l=2nh1(l1n)h2((nl+1n))+h1(0)h2(1)+h1(1)h2(0)2, where φ(α1,(n+1)α1)=Φ(α1)Ψ(α1)+Φ((n+1)α1)Ψ((n+1)α1), and χ(α1,(n+1)α1)=Φ(α1)Ψ((n+1)α1)+Φ((n+1)α1)Ψ(α1).

Example 3.17.

Let α1=3,n=2,Φ(ϱ1)=[1ϱ1,ϱ1],Ψ(ϱ1)=[ϱ1,10ϱ1]. In this case Φ(ϱ1)Ψ(ϱ1)=[1,10ϱ1]. Further, choose h1(η)=h2(η)=η in Corollary 3.16 to get [1,60][1.16625,57.99].

Corollary 3.18.

When T=qN and ζ = 1, ϑ=qn+1,q>1 in Theorem 3.14, then set inclusions Equation(22) take the form l=0nql(Φ(ql)Ψ(ql)+Φ(ql+1)Ψ(ql+1))φ(1,qn+1)l=0n(qlqn+11)(h1(ql1qn+11)h2(ql1qn+11)+h1(ql+11qn+11)h2(ql+11qn+11))+χ(1,qn+1)l=0n(qlqn+11)(h1(ql1qn+11)h2(qn+1qlqn+11)+h1(ql+11qn+11)h2(qn+1ql+1qn+11)) where φ(1,qn+1)=Φ(1)Ψ(1)+Φ(qn+1)Ψ(qn+1), and χ(1,qn+1)=Φ(1)Ψ(qn+1)+Φ(qn+1)Ψ(1).

Example 3.19.

Choose T=3N0,[ζ,ϑ]=[1,10] In this case [ζ,ϑ]T={1,3,32}. Also assume Φ(ϱ1)=[1ϱ1,ϱ1,] Ψ(ϱ1)=[ϱ1,10ϱ1], h1(η)=h2(η)=1 in Corollary 3.18 to get [1,50][1.388,20].

Theorem 3.20.

Let Φ,Ψ:ITRI+ be two interval valued functions which are h-convex with Φ(ϱ1)=[Φ¯(ϱ1),Φ¯(ϱ1)],Ψ(ϱ1)=[Ψ¯(ϱ1),Ψ¯(ϱ1)] and ΦΨIR([ζ,ϑ]T),h1,h2:[0,1]TR are positive right dense continuous functions and h1(12)h2(12)0. If ΦSX1(h1,IT,RI+),ΨSX1(h2,IT,RI+), then (23) 12h1(12)h2(12)Φ(ζ+ϑ2)Ψ(ζ+ϑ2)1ϑζζϑΦ(ϱ1)Ψ(ϱ1)12ϱ1+φ(ζ,ϑ)01h2(η)h1(η)12η+χ(ζ,ϑ)01h2(1η)h1(η)12η.(23)

Proof.

By hypothesis, one has that h1(12)Φ((1η)ϑ+ηζ)+h1(12)Φ(ηζ+(1η)ϑ)Φ(ζ+ϑ2)h2(12)Ψ((1η)ϑ+ηζ)+h2(12)Ψ(ηζ+(1η)ϑ)Ψ(ζ+ϑ2).

Then Φ(ζ+ϑ2)Ψ(ζ+ϑ2)h1(12)h2(12)[Φ¯((1η)ϑ+ηζ)Ψ¯((1η)ϑ+ηζ)+Φ¯((1η)ϑ+ηζ)Ψ¯(ηζ+(1η)ϑ)+Φ¯(ηζ+(1η)ϑ)Ψ¯((1η)ϑ+ηζ)+Φ¯(ηζ+(1η)ϑ)Ψ¯(ηζ+(1η)ϑ),Φ¯((1η)ϑ+ηζ)Ψ¯((1η)ϑ+ηζ)+Φ¯((1η)ϑ+ηζ)Ψ¯(ηζ+(1η)ϑ)+Φ¯(ηζ+(1η)ϑ)Ψ¯((1η)ϑ+ηζ)+Φ¯(ηζ+(1η)ϑ)Ψ¯(ηζ+(1η)ϑ)]=h1(12)h2(12)[Φ¯((1η)ϑ+ηζ)Ψ¯((1η)ϑ+η),Φ¯((1η)ϑ+ηζ)Ψ¯((1η)ϑ+ηζ)]+h1(12)h2(12)[Φ¯((1η)ϑ+ηζ)Ψ¯(ηζ+(1η)ϑ),Φ¯((1η)ϑ+ηζ)Ψ¯(ηζ+(1η)ϑ)]+h1(12)h2(12)[Φ¯(ηζ+(1η)ϑ)Ψ¯((1η)ϑ+ηζ),Φ¯(ηζ+(1η)ϑ)Ψ¯((1η)ϑ+ηζ)]+h1(12)h2(12)[Φ¯(ηζ+(1η)ϑ)Ψ¯(ηζ+(1η)ϑ),Φ¯(ηζ+(1η)ϑ)Ψ¯(ηζ+(1η)ϑ)]=h1(12)h2(12)[Φ((1η)ϑ+ηζ)Ψ((1η)ϑ+ηζ)+Φ(ηζ+(1η)ϑ)Ψ(ηζ+(1η)ϑ)] +h1(12)h2(12)[Φ((1η)ϑ+ηζ)Ψ(ηζ+(1η)ϑ)+Φ(ηζ+(1η)ϑ)Ψ((1η)ϑ+ηζ)]h1(12)h2(12)[Φ((1η)ϑ+ηζ)Ψ((1η)ϑ+ηζ)+Φ(ηζ+(1η)ϑ)Ψ(ηζ+(1η)ϑ)]+h1(12)h2(12)[(h1((1η))Φ(ϑ)+h1ηΦ(ζ))(h2(η)Ψ(ζ)+h2(1η)Ψ(ϑ))+(h1(η)Φ(ζ)+h1(1η)Φ(ϑ))(h2(1η)Ψ(ϑ)+h2(η)Ψ(ζ))]=h1(12)h2(12)[Φ((1η)ϑ+ηζ)Ψ((1η)ϑ+ηζ)+Φ(ηζ+(1η)ϑ)Ψ(ηζ+(1η)ϑ)]+h1(12)h2(12)[(h1(1η)h2(η)+h1(η)h2(1η))φ(ζ,ϑ)+(h1(1η)h2(1η)+h1(η)h2(η))χ(ζ,ϑ)].

Integration over [0,1], gives 12h1(12)h2(12)Φ(ζ+η2)Ψ(ζ+η2)1ϑζζϑΦ(ϱ1)Ψ(ϱ1)12ϱ1+φ(ζ,ϑ)01h2(η)h1(η)12η+χ(ζ,ϑ)01h2(1η)h1(η)12η.

It concludes the proof. □

Corollary 3.21.

If we choose time scale to be set of real numbers in Theorem 3.20, it becomes (Zhao et al., Citation2018, Theorem 4.6).

Corollary 3.22.

When T=α1N and ζ=α1,η=(n+1)α1,α1>0 in Theorem 3.20, then set inclusion Equation(23) becomes n2h1(12)h2(12)Φ(α1+(n+1)α12)Ψ(α1+(n+1)α12)l=2nΦ(lα1)Ψ(lα1)+Φ(α1)Ψ(α1)+Φ((n+1)α1)Ψ((n+1)α1)2+φ(α1,(n+1)α1)l=2nh1(l1n)h2(l1n)+h1(0)h2(0)+h1(1)h2(1)2+χ(α1,(n+1)α1)l=2nh1(l1n)h2((nl+1n))+h1(0)h2(1)+h1(1)h2(0)2.

Example 3.23.

Let α1=3,n=2,Φ(ϱ1)=[1ϱ1,ϱ1],Ψ(ϱ1)=[ϱ1,10ϱ1]. In this case Φ(ϱ1)Ψ(ϱ1)=[1,10ϱ1]. Further, choose h1(η)=h2(η)=η in Corollary 3.22 to get [2,120][2.16625,117.99].

4. Conclusion

We have studied the h-convex (affine, concave) functions for interval valued functions. We proved Jensen’s type inequalityin for interval valued h-convex functions on time scales. In seek of applications, we proved interval valued Hermite-Hadamard type inequalities on time scales. Present results generalize the existing inequalities given in Zhao et al. (Citation2018). We have discussed all the obtained inequalities by choosing T=αZ for (α>0). Which are also new up to knowledge of authors. Some numerical examples are also provided to illustrate the results.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Agarwal, R., Bohner, M., & Peterson, A. (2001). Inequalities on time scales: A survey. Mathematical Inequalities & Applications, 21(4), 535–557. doi:10.7153/mia-04-48
  • Ammi, M. R. S., Ferreira, R. A. C., & Torres, D. F. M. (2008). Diamond-a Jensen’s inequality on time scales. Journal of Inequalities and Applications, 2008, 576876.
  • An, Y., Ye, G., Zhao, D., & Liu, W. (2019). Hermite-Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics, 7(5), 436. doi:10.3390/math7050436
  • Andrić, M. (2021). Jensen-type inequalities for (h, g; m)-convex functions. Mathematics, 9(24), 3312. doi:10.3390/math9243312
  • Awan, M. U., Noor, M. A., Noor, K. I., & Safdar, F. (2017). On strongly generalized convex functions. Filomat, 31(18), 5783–5790. doi:10.2298/FIL1718783A
  • Bohner, M., & Warth, H. (2007). The Beverton–Holt dynamic equation. Applicable Analysis, 86(8), 1007–1015. doi:10.1080/00036810701474140
  • Cabrerizo, M. J., & Marañón, E. (2022). Net effect of environmental fluctuations in multiple global-change drivers across the tree of life. PNAS, Ecology, 119(32), e2205495119.
  • Chalco-Cano, Y., Flores-Franulič, A., & Román-Flores, H. (2012). Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Computational & Applied Mathematics, 31, 457–472.
  • Dinghas, A. (1956). Zum minkowskischen integralbegriff abgeschlossener mengen. Mathematische Zeitschrift, 66(1), 173–188. doi:10.1007/BF01186606
  • Dinu, C. (2008). Convex functions on time scales. Analele Universitatii din Craiova. Seria Matematica Informatica, 35, 87–96.
  • Dinu, C. (2008). Hermite-Hadamard inequality on time scales. Journal of Inequalities and Applications, 2008(1), 287947. doi:10.1155/2008/287947
  • Dragomir, S. S. (2015). Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces. Proyecciones (Antofagasta), 34(4), 323–341. doi:10.4067/S0716-09172015000400002
  • Dragomir, S. S., & Keady, G. (1998). A Hadamard-Jensen inequality and an application to the elastic torsion problem. RGMIA Research Report Collection, 1(2), 1–10.
  • Gallego-Posada, J. D., & Puerta-Yepes, M. E. (2018). Internal analysis and optimization applied to parameter estimation under uncertainty. Boletim da Sociedade Paranaense de Matemática, 36(2), 107–124. doi:10.5269/bspm.v36i2.29309
  • Guo, Y., Ye, G., Zhao, D., & Liu, W. (2019). Some integral inequalities for log-h-convex interval-valued functions. IEEE Access, 7, 86739–86745. doi:10.1109/ACCESS.2019.2925153
  • Hilger, S. (1990). Analysis on measure chains–a unified approach to continuous and discrete calculus. Results in Mathematics, 18(1–2), 18–56. doi:10.1007/BF03323153
  • Khan, M. A., Ali, T., & Khan, T. U. (2017). Hermite-Hadamard type inequalities with applications. Fasciculi Mathematici, 59(1), 57–74. doi:10.1515/fascmath-2017-0017
  • Khan, M. B., Srivastava, H. M., Mohammed, P. O., Nonlaopon, K., & Hamed, Y. S. (2022). Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 7, 4338–4358.
  • Lara, T., Merentes, N., & Nikodem, K. (2016). Strong h-convexity and separation theorems. International Journal of Analysis, 2016, 1–5. doi:10.1155/2016/7160348
  • Liu, X., Ye, G., Zhao, D., & Liu, W. (2019). Fractional Hermite–Hadamard type inequalities for interval-valued functions. Journal of Inequalities and Applications, 2019(1), 1–11. doi:10.1186/s13660-019-2217-1
  • Markov, S. (1979). Calculus for interval functions of a real variable. Computing, 22(4), 325–337. doi:10.1007/BF02265313
  • Mohammed, P. O., Ryoo, C. S., Kashuri, A., Hamed, Y. S., & Abualnaja, K. M. (2021). Some Hermite–Hadamard and Opial dynamic inequalities on time scales. Journal of Inequalities and Applications, 2021(1), 1–11. doi:10.1186/s13660-021-02624-9
  • Moore, R. E. (1979). Methods and applications of interval analysis. SIAM.
  • Moore, R. E. (1996). Interval analysis (p. 4). Prentice-Hall Englewood Cliffs.
  • Mughal, A. A., Almusawa, H., Haq, A. U., & Baloch, I. A. (2021). Properties and bounds of Jensen-type functionals via harmonic convex functions. Journal of Mathematics, 2021, 1–13. doi:10.1155/2021/5561611
  • Niculescu, C., & Persson, L.-E. (2006). Convex functions and their applications. Canadian Mathematical Society, Springer.
  • Noor, M. A., Noor, K. I., & Awan, M. U. (2015). A new Hermite-Hadamard type inequality for h-convex functions. Creative Mathematics and Informatics, 24, 191–197.
  • Pečarić, J. E., & Tong, Y. L. (1992). Convex functions, partial orderings, and statistical applications, vol. 187, Mathematics in Science and Engineering. Boston: Academic Press.
  • Rodić, M. (2022). Some generalizations of the Jensen-type inequalities with applications. Axioms, 11(5), 227. doi:10.3390/axioms11050227
  • Ruel, J. J., & Ayres, M. P. (1999). Jensen’s inequality predicts effects of environmental variation. Trends in Ecology & Evolution, 14(9), 361–366. doi:10.1016/s0169-5347(99)01664-x
  • Sarikaya, M. Z., Saglam, A., & Yildirim, H. (2008). On some Hadamard-type inequalities for h-convex functions. Journal of Mathematical Inequalities, 2(3), 335–341. doi:10.7153/jmi-02-30
  • Sheng, Q., Fadag, M., Henderson, J., & Davis, J. M. (2006). An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Analysis: Real World Applications, 7(3), 395–413. doi:10.1016/j.nonrwa.2005.03.008
  • Stefanini, L. (2010). A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems, 161(11), 1564–1584. doi:10.1016/j.fss.2009.06.009
  • Yadav, V., Bhurjee, A. K., Karmakar, S., & Dikshit, A. K. (2017). A facility location model for municipal solid waste management system under uncertain environment. Science of the Total Environment, 603–604, 760–771. doi:10.1016/j.scitotenv.2017.02.207
  • Younus, A., Asif, M., & Farhad, K. (2015). On Gronwall type inequalities for interval-valued functions on time scales. Journal of Inequalities and Applications, 2015(1), 1–18. doi:10.1186/s13660-015-0797-y
  • Zalinescu, C. (2002). Convex analysis in general vector spaces, World Scientific. doi:10.1142/5021
  • Zhao, D., An, T., Ye, G., & Liu, W. (2018). New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions. Journal of Inequalities and Applications, 2018(1), 1–11. doi:10.1186/s13660-018-1896-3
  • Zhao, D., Ye, G., Liu, W., & Torres, D. F. (2019). Some inequalities for interval-valued functions on time scales. Soft Computing, 23(15), 6005–6015. doi:10.1007/s00500-018-3538-6