283
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New modification of the Post Widder operators preserving exponential functions

ORCID Icon
Pages 93-103 | Received 25 Jun 2023, Accepted 03 Jan 2024, Published online: 17 Jan 2024

Abstract

The current article deals with a modification of the Post-Widder operators which reproduce the exponential functions both eμx and e2μx for μ>0. The central moments, uniform convergence of the operators and the rate of convergence of these operators with the help of modulus of continuity are estimated. Also, a Voronovskaja-type asymptotic formula is established. After that, numerical results are obtained to confirm the theoretical results. Finally, new constructed operators are compared with modified Post-Widder operators.

MSC CLASSIFICATION:

1. Introduction

In 1976, May (May, Citation1976) introduces the Post-Widder operators for λ1,fC[0,) and J=(0,) as follows: Pλ(f;x)=λλxλΓ(λ)0tλ1eλtxf(t)dt,xJ, where Γ(λ)=(λ1)!. In 2020, for fC[0,),xJ and λ1, the modified form of the Post-Widder operators (Sofyalıoğlu & Kanat, Citation2020) is defined by (1) Pλ,α*(f;x)=(2a)λ(1e2axλ)λΓ(λ)0tλ1e2at1e2ax/λf(t)dt.(1)

Here, the operators given by Equation(1) reproduce constant and e2ax for fixed a > 0. For some recent studies on linear positive operators preserving exponential functions, we refer the readers to the literature (Acar, Aral, Cárdenas-Morales, & Garrancho, Citation2017; Acu, Aral, & Rasa, Citation2023; Aral, Cárdenas-Morales, & Garrancho, Citation2018; Aral, Limmam, and Ozsarac, Citation2019, Gupta & Agrawal, Citation2019; Gupta & Herzog, Citation2023; Gupta & López-Moreno, Citation2018; Gupta & Tachev, Citation2022a; Citation2022b, Kanat & Sofyalıoğlu, Citation2021; Sofyalıoğlu & Kanat, Citation2019 and Torun, Citation2022).

In the current paper, we construct a generalization of the Post-Widder operators, which preserve both eμx and e2μx for μ>0. The aim of this paper is to obtain better approximation results than the results in Equation(1). Firstly, our starting point is the general sequence (2) Pλα,β(f;x)=λλ(αλ(x))λΓ(λ)0tλ1eλtβλ(x)f(t)dt,xJ,(2) for fC[0,) and λN+. Here, αλ(x) and βλ(x) are positive functions to be calculated in such a way that the operators Equation(2) hold fixed the functions eμx and e2μx for μ>0. In order to define the sequences αλ(x) and βλ(x) explicitly, we consider the following identities Pλα,β(eμt;x)=eμx,Pλα,β(e2μt;x)=e2μx, for every xJ and λN+. By choosing f(t)=eμt in Equation(2), we achieve eμx=λλ(αλ(x))λΓ(λ)0tλ1e(λβλ(x)μ)teμtdt,λβλ(x)>μ=(λαλ(x)[λβλ(x)μ])λ.

Similarly, by taking f(t)=e2μt in Equation(2), we have e2μx=λλ(αλ(x))λΓ(λ)0tλ1e(λβλ(x)2μ)tdt,λβλ(x)>2μ=(λαλ(x)[λβλ(x)2μ])λ.

After simple calculations, we get αλ(x)=λ(eμxλ1)μe2μxλ,βλ(x)=λ(eμxλ1)μ(2eμxλ1).

Attention that αλ(x) and βλ(x) tend to x as λ. So, the operators Pλα,β return to Pλ. Now, we substitute the values αλ(x) and βλ(x) in the operators Equation(2). After some rearranging, we obtain (3) Pλθ(f;x):=Pλα,β(f;x)=λλeμx(θλ(x))λΓ(λ)0tλ1eλtθλ(x)(fexpμ)(t)dt,(3) where expμ(t)=eμt,xJ,λN+ and (4) θλ(x)=λ(eμxλ1)μeμxλ.(4)

Henceforth, we will use the notation Pλθ of our new construction for the Post-Widder operators throughout the article. The classical Post-Widder operators Pλ Equation(1) and the new construction of the Post-Widder operators Pλθ Equation(3) are related by Pλθ(f;x)=expμ(x)Pλ(fexpμ;θλ(x)).

Currently, we mention some auxilary lemmas.

Lemma 1.

Let K<μ(1+eμx/λeμx/λ1), then we have (5) Pλθ(eKt;x)=eμx(1(Kμ)θλ(x)λ)λ,(5) where θλ(x) is given by Equation(4).

Proof.

From Equation(3), we have Pλθ(eKt;x)=λλeμx(θλ(x))λΓ(λ)0tλ1eλtθλ(x)expKexpμ(t)dt=λλeμx(θλ(x))λΓ(λ)0tλ1e(λθλ(x)+μK)tdt,λθλ(x)+μ>K=λλeμx(θλ(x))λ1(K+μ+λθλ(x))λ=eμx(1(Kμ)θλ(x)λ)λ, where θλ(x) is as given by Equation(4).

Lemma 2.

For sN the rising factorial is denoted by (λ)s=λ(λ+1)(λ+s1),(λ)0=1. Then we have Pλθ(tseKt;x)=eμx (λ)s λλ(θλ(x))λ(K+μ+λθλ(x))sλ.

Proof.

From Equation(3), we have Pλθ(tseKt;x)=eμxλλ(θλ(x))λΓ(λ)0tλ+s1eλtθλ(x)expKexpμ(t)dt=eμxλλ(θλ(x))λΓ(λ)0tλ+s1e(λθλ(x)+μK)tdt,λθλ(x)+μ>K=eμx (λ)s λλ(θλ(x))λ(K+μ+λθλ(x))sλ, where θλ(x) is as given by Equation(4).

Lemma 3.

For the operators Equation(3) we have the following moments Pλθ(e0;x)=1,Pλθ(e1;x)=λ(eμx/λ1)μe2μx/λ,Pλθ(e2;x)=λ(λ+1)(eμx/λ1)2μ2e4μx/λ,Pλθ(e3;x)=λ(λ+1)(λ+2)(eμx/λ1)3μ3e6μx/λ,Pλθ(e4;x)=λ(λ+1)(λ+2)(λ+3)(eμx/λ1)4μ4e8μx/λ, where es(t)=ts,s=0,1,2,3,4.

Proof.

By choosing K = 0 and s=0,1,2,3,4 in Lemma 2, respectively, we obtain the desired results.

Lemma 4.

Let ψxs(t)=(tx)s,s=0,1,2,4. Then we write the following central moments Pλθ(ψx1;x)=e2μx(λ(eμx/λ1)μ(2eμx/λ1)x)μ(2eμx/λ1)λ+1,Pλθ(ψx2;x)=e2μx(λ(λ+1)(eμx/λ1)22μλ(eμx/λ1)(2eμx/λ1)x+μ2(2eμx/λ1)2x2)μ2(2eμx/λ1)λ+2,Pλθ(ψx4;x)=e2μxμ4(2eμx/λ1)λ+4{λ(λ+1)(λ+2)(λ+3)(eμx/λ1)44[μλ(λ+1)(λ+2)(eμx/λ1)3(2eμx/λ1)]x+6[μ2λ(λ+1)(eμx/λ1)2(2eμx/λ1)2]x24[μ3λ(eμx/λ1)(2eμx/λ1)3]x3+μ4(2eμx/λ1)4x4}.

Proof.

By using the linearity of the operators Equation(3), Pλθ(ψx1;x)=Pλθ(e1;x)xPλθ(e0;x)Pλθ(ψx2;x)=Pλθ(e2;x)2xPλθ(e1;x)+x2Pλθ(e0;x)Pλθ(ψx4;x)=Pλθ(e4;x)4xPλθ(e3;x)+6x2Pλθ(e2;x)4x3Pλθ(e1;x)+x4Pλθ(e0;x) the proof is completed.

Furthermore, we obtain the limits of the central moments as follows: limλλPλθ(ψx1;x)=3μ2x2,limλλPλθ(ψx2;x)=x2,limλλ2Pλθ(ψx4;x)=3x4.

1.1. Preliminaries

In the current part, we give the main definitions which will be used in the paper. Let the subspace of real-valued continuous functions on (0,) which possess finite limit at infinity be denoted by C*(0,). The space C*(0,) is equipped with the uniform norm. In the following remark, we will check that the operators Pλθ(f;x) belong to the space C*(0,).

In 2010, Holhoş (Holhoş, Citation2010) come to grips with the uniform convergence of the linear positive operators and obtained the following theorem with the help of modulus of continuity (6) ω*(f,η)=sup|exet|ηx,t>0|f(t)f(x)|.(6)

Theorem

(Holhoş, Citation2010). Let Bλ:C*[0,)C*[0,) be a sequence of linear positive operators, then Bλ(f;x)f(x)[0,)f[0,)δλ+(2+δλ)ω*(f,δλ+2σλ+ρλ) for every function fC*[0,), where Bλ(e0;x)1[0,)=δλ,Bλ(et;x)ex[0,)=σλ,Bλ(e2t;x)e2x[0,)=ρλ

As λ the variables δλ,σλ and ρλ tend to zero.

Let the class of all bounded and uniform continuous functions f on (0,) be denoted by CB(0,), equipped with the norm fCB=supx>0|f(x)|. The modulus of continuity of the function fCB(0,) is defined by ω(f,δ):=sup0<k<δsupx,x+kJ|f(x+k)f(x)|,

Moreover, for fCB(0,), the second order modulus of continuity is described as ω2(f,δ):=sup0<k<δsupx,x+kJ|f(x+2k)2f(x+k)+f(x)|, where δ>0. Furthermore, Peetre’s K-functionals are defined by K2(f,δ):=infhCB2(0,){||fh||CB(0,)+δ||h||CB2(0,)}. CB2(0,) indicates the space of the functions f, for which f, f and f be a member of CB(0,). In 1993, DeVore (DeVore & Lorentz, Citation1993) represented the relation between the second order modulus of continuity and Peetre’s K-functional as follows K2(f,δ)Mω2(f,δ), where M > 0.

The structure of this paper is as follows: In the next section, we give uniform convergence theorem as a main result. In Section 3, we give approximation results by using the modulus of continuity. In Section 3, we mention Voronovskaya-type theorem for asymptotic estimation. In last section, we present the comparison of the newly constructed operators with different operators theoretically and graphically.

2. Main results

In this part, we will briefly study the approximation properties of the new constructed operators Pλθ.

Remark 1.

Let λN+,x,t(0,) and Sλθ(x,t)=λλ(θλ(x))λΓ(λ)tλ1eμx(λθλ(x)μ)t.

Then we write Pλθ(f;x)=0Sλθ(x,t)f(t)dt and we already know from Lemma 3 that Pλθ(e0;x)=1.

We conclude from the exponential component that Sλθ(x,t) is bounded. So, we can write Sλθ(x,t)K for fixed K and x,t>0. Let f0,fC(0,) and limxf(x)=0. For a fixed positive ϵ, such a positive L exists such that |f(x)|ϵ2 for all xL. Let a:=ϵ2K||f|| and xL, then we write aSλθ(x,t)dt0Sλθ(x,t)dt=Pλθ(1;x)=λλeμx(θλ(x))λΓ(λ)0tλ1eλtθλ(x)1expμ(t)dt=1 and taL, hence |f(x)|ϵ2,ta. |Pλθ(f;x)|0Sλθ(x,t)|f(t)|dt=aSλθ(x,t)|f(t)|dt+0aSλθ(x,t)|f(t)|dtϵ2aSλθ(x,t)dt+||f||K0adtϵ2+aK||f||=ϵ.

Thusly, for all xL we have |Pλθ(f;x)|ϵ, scilicet, limxf(x)=0. This result denotes that the operators Pλθ(f;x) belong to C*(0,). Finally, we write Pλθ:C*(0,)C*(0,).

In 1970, Boyanov and Veselinov (Boyanov & Veselinov, Citation1970) built a theorem in order to show uniform convergence of the linear positive operators. For the new constructed operators Equation(3), we adapt this theorem in the next form.

Theorem 1.

Let the sequence of linear positive operators Pλθ:C*(0,)C*(0,) satisfy limλPλθ(eξt;x)=eξx,ξ=0,1,2, uniformly in (0,). Then for each fC*(0,), limλPλθ(f;x)=f(x) is satisfied uniformly in (0,).

Proof.

From Lemma 1 and Lemma 3, we achieve (7) Pλθ(1;x)=1,Pλθ(et;x)=eμx(1+(1+μ)θλ(x)λ)λ=ex+(1+μ)(1+2μ)x2ex2λ(1+μ)(1+2μ)(2+3μ)x3ex6λ2+(1+μ)2(1+2μ)2x4ex8λ2+O(λ3)(7) and (8) Pλθ(e2t;x)=eμx(1+(2+μ)θλ(x)λ)λ=e2x+(1+μ)(1+2μ)x2e2xλ(1+μ)(1+2μ)(43μ)x3e2x3λ2+(1+μ)2(1+2μ)(2+μ)x4e2x2λ2+O(λ3),(8) where θλ(x) given in Equation(4). By taking limit as λ goes to infinity, we complete the proof. Hereby, we obtain that limλPλθ(eξt;x)=eξx,ξ=0,1,2, uniformly in (0,). Then for each fC*(0,), limλPλθ(f;x)=f(x) converges uniformly in (0,).

Now, we present a quantitive estimation of the new construction of the Post-Widder operators Pλθ according to Holhoş’s (Holhoş, Citation2010) theorem as follows:

Theorem 2.

Let Pλθ:C*[0,)C*(0,) be a sequence of linear positive operators, then we write the next inequality for every fC*(0,) Pλθff(0,)2ω*(f,2σλ+ρλ), where Pλθ(et;x)ex(0,)=σλ,Pλθ(e2t;x)e2x(0,)=ρλ.

Here, Pλθf converges uniformly to f. Additionally, σλ and ρλ tend to zero as λ.

Proof.

From Holhoş’s theorem (Holhoş, Citation2010) and Lemma 3, we obtain that δλ=Pλθ(1;x)1(0,)=0.

In order to calculate σλ, we take into account the equality Equation(7), J=(0,), σλ=Pλθ(et;x)ex(0,)=supxJ|Pλθ(et;x)ex|=supxJ|(1+μ)(1+2μ)x2ex2λ(1+μ)(1+2μ)(2+3μ)x3ex6λ2+(1+μ)2(1+2μ)2x4ex8λ2+O(λ3)|.

By using the supremum values supxJ x2ex=4e2,supxJ x3ex=27e3,supxJ x4ex=256e4, we achieve σλ2(1+μ)(1+2μ)λe2+9(1+μ)(1+2μ)(2+3μ)2λ2e3+32(1+μ)2(1+2μ)2λ2e4+O(λ3).

We represent the convergence rate of σλ in for μ{0.25,0.5,0.75,1,1.25},x[0.1,20] and λ{50,75,100,125}. In the same manner, ρλ=Pλθ(e2t;x)e2x(0,)=supxJ|Pλθ(e2t;x)e2x|=supxJ|(1+μ)(1+2μ)x2e2xλ(1+μ)(1+2μ)(43μ)x3e2x3λ2+(1+μ)2(1+2μ)(2+μ)x4e2x2λ2+O(λ3)|.

By using supxJ x2e2x=1e2,supxJ x3e2x=278e3,supxJ x4e2x=16e4, we obtain the inequality ρλ(1+μ)(1+2μ)λe2+9(1+μ)(1+2μ)(43μ)8λ2e3+8(1+μ)2(1+2μ)(2+μ)λ2e4+O(λ3).

We investigate the convergence rate of ρλ in numerically.

Finally, we analyze the results of and and . Then we achieve that σλ and ρλ tend to zero as λ.

Figure 1. About σλ and ρλ.

Figure 1. About σλ and ρλ.

3. Modulus of continuity

In this part, we mention the rate of convergence with the help of usual modulus of continuity.

Lemma 5

. Let fCB(0,). Then we have |Pλθ(f;x)|||f||.

Proof.

From Equation(3), we get |Pλθ(f;x)|=|λλeμx(θλ(x))λΓ(λ)0tλ1eλtθλ(x)fexpμ(t)dt|λλeμx(θλ(x))λΓ(λ)0tλ1e(λθλ(x)+μ)t|f(t)|dt||f||Pλθ(1;x)=||f||.

Theorem 3.

Let fCB(0,). Then for every xJ, there is a constant M > 0, such that |Pλθ(f;x)f(x)|Mω2(f,ηλ,μ)+ω(f,δλ,μ), where ηλ,μ=e2μx(λ(λ+1)(eμx/λ1)22μλ(eμx/λ1)(2eμx/λ1)x+μ2(2eμx/λ1)2x2)μ2(2eμx/λ1)λ+2+(xλ(eμx/λ1)μe2μx/λ)2,δλ,μ=|λ(eμx/λ1)μe2μx/λx|.

Proof.

For the proof, we describe the auxiliary operators P˜λθ:CB(0,)CB[0,) (9) P˜λθ(h;x)=Pλθ(h;x)+h(x)h(λ(eμx/λ1)μe2μx/λ).(9)

By using the Taylor expansion for a function hCB2(0,), we have (10) h(t)=h(x)+(tx)h(x)+xt(tu)h(u)du,x,tJ.(10)

We apply P˜λθ operators to the EquationEqn. (10). By using Lemma 4, we get (11) |P˜λθ(h;x)h(x)|=|P˜λθ(xt(tu)h(u)du;x)||Pλθ(xt(tu)h(u)du;x)|+|xλ(eμx/λ1)μe2μx/λ(λ(eμx/λ1)μe2μx/λu)h(u)du|.(11)

Further, (12) |Pλθ(xt(tu)h(u)du;x)|Pλθ(xt|tu||h(u)|du;x)||h||Pλθ(ψx2;x)(12) and (13) |xλ(eμx/λ1)μe2μx/λ(λ(eμx/λ1)μe2μx/λu)h(u)du|||h||(λ(eμx/λ1)μe2μx/λx)2.(13)

Using the inequalities Equation(11), Equation(12) and Equation(13), we obtain (14) |P˜λθ(h;x)h(x)|||h||(Pλθ(ψx2;x)+(λ(eμx/λ1)μe2μx/λx)2)=||h||(e2μx(λ(λ+1)(eμx/λ1)22μλ(eμx/λ1)(2eμx/λ1)x+μ2(2eμx/λ1)2x2)μ2(2eμx/λ1)λ+2+(xλ(eμx/λ1)μe2μx/λ)2):=||h||ηλ,μ,(14) where ηλ,μ=e2μx(λ(λ+1)(eμx/λ1)22μλ(eμx/λ1)(2eμx/λ1)x+μ2(2eμx/λ1)2x2)μ2(2eμx/λ1)λ+2+(xλ(eμx/λ1)μe2μx/λ)2.

From auxiliary operators Equation(9) and Lemma 5, we write (15) ||P˜λθ(f;x)||||Pλθ(f;x)||+2||f||3||f||.(15)

By using Equation(9), Equation(14), Equation(15) for every hCB2(0,) and by choosing δλ,μ=|λ(eμx/λ1)μe2μx/λx|, we have |Pλθ(f;x)f(x)|=|P˜λθ(f;x)f(x)+f(λ(eμx/λ1)μe2μx/λ)f(x)+P˜λθ(h;x)P˜λθ(h;x)+h(x)h(x)||P˜λθ(fh;x)(fh)(x)|+|f(λ(eμx/λ1)μe2μx/λ)f(x)|+|P˜λθ(h;x)h(x)|4||fh||+||h||ηλ,μ+|f(λ(eμx/λ1)μe2μx/λ)f(x)|K2(f,ηλ,μ)+ω(f,|λ(eμx/λ1)μe2μx/λx|)Mω2(f,ηλ,μ)+ω(f,δλ,μ).

Remark 2.

One can check that ηλ,μ0 and δλ,μ0 as λ. This result guarantees the convergence of the Theorem 3.

4. Voronovskaya-type theorem

In this part, we mention some asymptotic estimation results of the pointwise convergence in the case of the functions with exponential growth.

Theorem 4.

For f,f,fC*(0,) and xJ, we write |λ(Pλθ(f;x)f(x))+3μ2x2f(x)x22f(x)||qλ(x)||f(x)|+|sλ(x)||f(x)|+2(2sλ(x)+x2+tλ(x))ω*(f,λ1/2), where qλ(x)=λPλθ(ψx1;x)+3μ2x2,sλ(x)=λ2Pλθ(ψx2;x)x22,tλ(x)=λ2Pλθ((exet)4;x)Pλθ(ψx4;x).

Proof.

From Taylor’s formula, we can write (16) f(t)=f(x)+(tx)f(x)+(tx)22f(x)+r(t,x)(tx)2,(16) where (17) r(t,x):=f(ξ)f(x)2(17) is the remainder term. ξ is a number between x and t. If we apply the Pλθ operators to Equation(16), we achieve Pλθ(f;x)f(x)=f(x)Pλθ(ψx1;x)+f(x)2Pλθ(ψx2;x)+Pλθ(r(t,x)ψx2;x).

After that, |λ[Pλθ(f;x)f(x)]+3μ2x2f(x)x22f(x)||λPλθ(ψx1;x)+3μ2x2||f(x)|+12|λPλθ(ψx2;x)x2||f(x)|+|λPλθ(r(t,x)ψx2;x)|=|qλ(x)||f(x)|+|sλ(x)||f(x)|+|λPλθ(r(t,x)ψx2;x)|.

We briefly denote that qλ(x):=λPλθ(ψx1;x)+3μ2x2 and sλ(x):=12(λPλθ(ψx2;x)x2). So, |λ[Pλθ(f;x)f(x)]+3μ2x2f(x)x22f(x)||qλ(x)||f(x)|+|sλ(x)||f(x)|+|λPλθ(r(t,x)ψx2;x)|.

Note that qλ(x) and sλ(x) tend to zero as λ from EquationEqn. (6) and EquationEqn. (6). Right now, we concern about the part |λPλθ(r(t,x)ψx2;x)| with the reminder term. (18) |f(t)f(x)|(1+(exet)2η2)ω*(f,η),(18) where ω*(f,η) is given by Equation(6). Using Equation(17) and the inequality Equation(18), we write |r(t,x)|(1+(exet)2η2)ω*(f,η). For η>0, if |exet|>η, then 1<exetη<(exet)2η2, so |r(t,x)|2(exet)2η2ω*(f,η) and if |exet|η, then we get |r(t,x)|2ω*(f,η). Thusly, we have |r(t,x)|2(1+(exet)2η2)ω*(f,η).

So, |λPλθ(r(t,x)ψx2;x)|λPλθ(|r(t,x)|ψx2;x)2λω*(f,η)Pλθ(ψx2;x)+2λη2ω*(f,η)Pλθ((exet)2ψx2;x)2λω*(f,η)Pλθ(ψx2;x)+2λη2ω*(f,η)Pλθ((exet)4;x)Pλθ(ψx4;x).

If we choose η=1/λ and tλ:=λ2Pλθ((exet)4;x)λ2Pλθ(ψx4;x), we get |λ(Pλθ(f;x)f(x))+3μ2x2f(x)x22f(x)||qλ(x)||f(x)|+|sλ(x)||f(x)|+(4sλ(x)+2x2+2tλ(x))ω*(f,λ1/2).

Remark 3.

We obtain the following result by direct calculations limλλ2Pλθ(ψx4;x)=3x4.

Additionally, we get the following result limλλ2Pλθ((etex)4;x)=3x4e4x.

We present the next corollary as an important result of Theorem 4 and Remark 3.

Corollary 5.

Let f,f,fC*(0,) and xJ. Then we have (19) limλλ(Pλθ(f;x)f(x))=3μ2x2f(x)+x22f(x).(19)

5. Comparison with Post-Widder operators preserving e2ax,a>0

Now, we give a theorem that the Pλθ(f;x) operators preserving both eμx and e2μx,μ>0 approximate better than the Post-Widder operators Pλ,α*(f;x) preserving e2ax,a>0 (Sofyalıoğlu & Kanat, Citation2020).

Corollary 6.

Let fC2(0,) be a decreasing and convex function. Then there is a natural number m0 such that for mm0, we write f(x)<Pλθ(f;x) for all x > 0.

Theorem 7.

Let fC2(0,). Assume that there exists m0N such that for all mm0,a>3μ2,x(0,) (20) f(x)Pλθ(f;x)Pλ,α*(f;x).(20)

Then (21) 12f(x)(3μ2a)f(x)0.(21)

In particular, f(x)0.

Conversely, if Equation(21) holds with strict at a point x(0,), then there is a natural number m0 such that for mm0 f(x)<Pλθ(f;x)<Pλ,α*(f;x).

Proof.

From Equation(20) we have for all mm0 and x(0,) that 0λ(Pλθ(f;x)f(x))λ(Pλ,α*(f;x)f(x)).

By taking into consideration the Voronovskaya-type theorem given in (Sofyalıoğlu & Kanat, Citation2020), we write (22) limλλ(Pλ,α*(f;x)f(x))=ax2f (x)+x22f(x).(22)

From EquationEqn. (19) and EquationEqn. (22), we have the following inequality 03μ2x2f(x)+x22f(x)ax2f(x)+x22f(x).

So, we directly obtain inequality Equation(21).

On the contrary, if inequality Equation(21) holds with strict at a given point x(0,), then 0<3μ2x2f(x)+x22f(x)<ax2f(x)+x22f(x).

After that, by using EquationEqn. (19) and EquationEqn. (22) ve get the desired result.

Now, we illustrate various examples to verify our theoretical results. When specifying the functions for the following two examples, we take into account the inequality Equation(21). Then we compare the operators Pλθ with Pλ,α* (Sofyalıoğlu & Kanat, Citation2020), and we present the attractive events.

Example 1.

Let we choose f(x)=e5x,[0.1,5]. In , we illustrate the convergence of the new constructed Pλθ(f;x) operators to the function f(x)=e5x for different μ{0.25,0.5,1} and λ=10,40,100 values. We see that we obtain pleasant convergence results from these choices. In , we compare Pλθ(f;x),μ=0.25 (red), Pλ,α*(f;x),a=2 (green) and the original function f(x)=e5x (blue).

Figure 2. Behaviour of Pλθ operators for various values of λ and μ.

Figure 2. Behaviour of Pλθ operators for various values of λ and μ.

Figure 3. Comparison of operators Pλθ(f;x) and Pλ,α*(f;x) for different λ values.

Figure 3. Comparison of operators Pλθ(f;x) and Pλ,α*(f;x) for different λ values.

From the and , one can easily arrive that, the operators Pλθ(f;x) converge more rapidly than Pλ,α*(f;x) to the function f(x)=e5x.

Table 1. The values of σλ for various λ and μ in the interval x[0.1,20].

Table 2. The values of ρλ for various λ and μ in the interval x[0.1,20].

Table 3. Comparison Of the errors for Pλ,α*,a=2 and Pλθ with respect to various values of μ{0.25,0.5,1}, for function f(x)=e5x in x[0.1,4].

Example 2.

Let f(x)=(2x4+3x2+6)e2x,[0.1,1.5]. In , we compare Pλθ(f;x),μ=0.25 (red), Pλ,α*(f;x),a=2 (green) and the original function f(x)=(2x4+3x2+6)e2x (blue) for λ{25,50,75}.

Figure 4. Comparison of operators Pλθ(f;x) and Pλ,α*(f;x) for different λ values.

Figure 4. Comparison of operators Pλθ(f;x) and Pλ,α*(f;x) for different λ values.

From the and , one can see that, the operators Pλθ(f;x) converge more rapidly than Pλ,α*(f;x) to the selected function f(x)=(2x4+3x2+6)e2x.

Table 4. Comparison of the errors for Pλ,α*,a=2 and Pλθ with respect to various values of μ{0.25,0.5,0.6}, for function f(x)=(2x4+3x2+6)e2x in x[0.1,5].

6. Conclusion

In this paper, we construct a new modification of Post-Widder operators which preserve both eμx and e2μx for positive μ. After that, we submit the uniform convergence theorem, rate of convergence theorems and Voronovskaya-type theorem. Moreover, we give an comparison theorem by using the results of Voronovskaya-type theorem of the new operators Pλθ and the reference operators Pλ,α*. According to the conditions Equation(21) of the comparison theorem, we determine the functions that are used in examples. Finally, the effectiveness of the newly constructed operators is shown with several graphs and error comparison tables. For the future work, Stancu-type generalization of the Post-Widder operators preserving two exponential functions can be investigated.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  • Acar, T., Aral, A., Cárdenas-Morales, D., & Garrancho, P. (2017). Szasz-Mirakyan type operators which fix exponentials. Results in Mathematics, 72(3), 1393–1404. doi:10.1007/s00025-017-0665-9
  • Acu, A. M., Aral, A., & Rasa, I. (2023). New properties of operators preserving exponentials. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 117(1). doi:10.1007/s13398-022-01332-3
  • Aral, A., Cárdenas-Morales, D., & Garrancho, P. (2018). Bernstein-type operators that reproduce exponential functions. Journal of Mathematical Inequalities, 12(3), 861–872. doi:10.7153/jmi-2018-12-64
  • Aral, A., Limmam, M. L., & Ozsarac, F. (2019). Approximation properties of Szasz-Mirakyan Kantorovich type operators. Mathematical Methods in the Applied Sciences, 42(16), 5233–5240. doi:10.1002/mma.5280
  • Boyanov, B. D., & Veselinov, V. M. (1970). A note on the approximation of functions in an infinite interval by linear positive operators. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 14(62), 9–13.
  • DeVore, R. A., & Lorentz, G. G. (1993). Constructive approximation (pp. 177). Berlin: Springer.
  • Gupta, V., & Agrawal, D. (2019). Convergence by modified Post-Widder operators. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113(2), 1475–1486. doi:10.1007/s13398-018-0562-4
  • Gupta, V., & Herzog, M. (2023). Semi Post-Widder operators and difference estimates. Bulletin of the Iranian Mathematical Society, 49(2), 18. doi:10.1007/s41980-023-00766-8
  • Gupta, V., & López-Moreno, A.-J. (2018). Phillips operators preserving arbitrary exponential functions eat, ebt. Filomat, 32(14), 5071–5082. doi:10.2298/FIL1814071G
  • Gupta, V., & Tachev, G. (2022b). Some results on Post-Widder operators preserving test function xr. Kragujevac Journal of Mathematics, 46(1), 149–165. doi:10.46793/KgJMat2201.149G
  • Gupta, V., & Tachev, G. (2022a). A modified Post Widder operators preserving eAx. Studia Universitatis Babes-Bolyai Matematica, 67(3), 599–606. doi:10.24193/subbmath.2022.3.11
  • Holhoş, A. (2010). The rate of approximation of functions in an infinite interval by positive linear operators. Studia Universitatis Babes-Bolyai, Mathematica, 2, 133–142.
  • Kanat, K., & Sofyalioğlu, M. (2021). On Stancu type Szász-Mirakyan-Durrmeyer operators preserving e2ax, a > 0. Gazi University Journal of Science, 34(1), 196–209. doi:10.35378/gujs.691419
  • May, C. P. (1976). Saturation and inverse theorems for combinations of a class of exponential type operators. Canadian Journal of Mathematics, 28(6), 1224–1250. doi:10.4153/CJM-1976-123-8
  • Sofyalıoğlu, M., & Kanat, K. (2019). Approximation properties of generalized Baskakov-Schurer-Szasz-Stancu operators preserving e2ax, a > 0. J Inequal Appl, 112, https://doi.org/10.1186/s13660-019-2062-2
  • Sofyalıoğlu, M., & Kanat, K. (2020). Approximation properties of the Post-Widder operators preserving e2ax, a > 0. Mathematical Methods in the Applied Sciences, 43(7), 4272–4285. doi:10.1002/mma.6192
  • Torun, G. (2022). On approximation properties of Stancu type Post-Widder operators preserving exponential functions. Gazi University Journal of Science Part A: Engineering and Innovation, 9(2), 173–186. doi:10.54287/gujsa.1113567