243
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Existence and κ-Mittag-Leffler-Ulam-Hyers stability results for implicit coupled (κ,ϑ)-fractional differential systems

, , &
Pages 225-241 | Received 09 Dec 2023, Accepted 20 Mar 2024, Published online: 04 Apr 2024

Abstract

In this paper, we delve into the analysis of the existence and stability concerning the κ-Mittag-Leffler-Ulam-Hyers within a particular class of coupled systems related to boundary value problems. These problems entail implicit nonlinear fractional differential equations and κ-generalized ϑ-Hilfer fractional derivatives. To achieve our objectives, we employ the Mönch fixed point theorem, complemented by the application of the measure of noncompactness technique and an extension of the well-established Gronwall inequality. Furthermore, we include an illustrative example to showcase the practical utility of our results. The significance of our research lies in examining a comprehensive problem involving coupled systems, which serves as a generalization encompassing all the works mentioned in the introduction. It is viewed as a logical extension and continuation within the framework of this continually evolving theory.

AMS (MOS) SUBJECT CLASSIFICATIONS:

1. Introduction

Fractional calculus, an intriguing approach that extends the concepts of differentiation and integration beyond integer orders, has attracted considerable interest in both theoretical investigations and real-world applications spanning a wide array of research fields. Its adaptability in tackling complex problems has firmly positioned it as an essential instrument in this domain. The past few years have witnessed a notable upswing in research related to fractional calculus, with scholars delving into a multitude of outcomes across different scenarios and formulations of fractional differential equations and inclusions. For a more comprehensive understanding of the practical applications of fractional calculus, readers are encouraged to consult the works by Herrmann (Citation2011), Hilfer (Citation2000), Kilbas et al. (Citation2006) and Samko et al. (Citation1993). Agrawal (Citation2012) introduced certain generalizations of fractional integrals and derivatives, elucidating some of their fundamental properties. In the studies conducted by Benchohra et al. (2023a, Citation2023b), they explored existence, uniqueness, and stability outcomes for various problem classes under different conditions. Their approach involved an extension of the well-established Hilfer fractional derivative, unifying the Riemann-Liouville and Caputo fractional derivatives. Recent literature features numerous papers and books wherein authors delve into the existence, stability, and uniqueness of solutions for a diverse array of systems involving fractional differential equations and inclusions. These investigations encompass the utilization of various fractional derivatives and different types of conditions. Readers seeking further references and specific papers may refer to (Almalahi et al., Citation2021; Bedi et al., Citation2020, Citation2021; Derbazi & Baitiche, Citation2020; Dhaniya et al., Citation2023; Guida et al., Citation2020; Kaushik et al., Citation2023; Lin et al., Citation2021; Redhwan et al., Citation2022; Selvam et al., Citation2020; Wongcharoen et al., Citation2020), and the citations therein.

In a recent publication (Díaz & Teruel, Citation2005), Diaz introduced novel definitions for the special functions κ-gamma and κ-beta. To delve deeper into this topic, interested readers can refer to additional sources such as (Chu et al., Citation2020; Mubeen & Habibullah, Citation2012). Furthermore, in another work (Sousa & de Oliveira, Citation2018), Sousa et al. presented the ϑ-Hilfer fractional derivative with respect to another function and elucidated some crucial properties related to this type of fractional operators. For further insights and more results based on this operator, we suggest exploring the papers (Afshari et al., Citation2021; Almalahi & Panchal, Citation2020; Sousa & Capelas de Oliveira, Citation2019a, Citation2019b) and their respective reference lists. Drawing inspiration from the various papers cited earlier, we have introduced a novel extension of the renowned Hilfer fractional derivative (Salim et al., Citation2022). This new extension, referred to as the κ-generalized ϑ-Hilfer fractional derivative, has allowed us to establish a generalization of Grönwall’s lemma and explore several types of Ulam stability. Furthermore, we have conducted an in-depth investigation of qualitative and quantitative results for diverse classes of fractional differential problems (Krim et al., Citation2023; Salim et al., Citation2021, Citation2022; Salim, Benchohra, et al., Citation2023; Salim, Bouriah, et al., Citation2023), all made possible through the application of this new generalized fractional operator. See (Benchohra et al., Citation2023a, Citation2023b), for more details.

In many situations, solving differential equations with precision proves to be a challenging or even insurmountable task. In such cases, alongside nonlinear analysis and optimization, our focus turns to approximating solutions. It’s crucial to emphasize that we only accept solutions that demonstrate stability. Therefore, a variety of methodologies for stability analysis are employed, including well-known techniques like Lyapunov and exponential stability. The notion of stability in functional equations was initially brought to the forefront by mathematician S.M. Ulam during a 1940 lecture at the University of Wisconsin. Ulam posed a fundamental question (Ulam, Citation1964). The subsequent year, Hyers addressed Ulam’s inquiry for additive functions defined on Banach spaces (Hyers, Citation1941). Rassias, in 1978, generalized Hyers’ findings and demonstrated the existence of unique linear mappings in close proximity to approximately additive mappings (Rassias, Citation1978). Ulam-Hyers stability analysis, in contrast to Lyapunov and exponential stability analysis, shifts its focus to understanding how a function behaves when subjected to perturbations rather than examining the stability of a dynamical system or equilibrium point. A number of researchers, as seen in (Ahmed et al., Citation2021; Benchohra et al., Citation2023a; Khan et al., Citation2017; Luo et al. Citation2020; Shah & Tunç, Citation2017; Wang et al., Citation2019; Zada et al., Citation2020), have explored the Ulam stabilities of fractional differential problems under varying conditions.

In (Ahmad et al., Citation2020), Ahmed et al. the authors examined the subsequent coupled implicit ϑ-Hilfer fractional differential system: {HDξ1+λ,r;ϑu(δ)=(δ,u(δ),HDξ1+λ,r;ϑv(δ)),δ=(ξ1,ξ2],HDξ1+λ,r;ϑv(δ)=g(δ,HDξ1+λ,r;ϑu(δ),v(δ)),γ=λ+rλr,Iξ1+1γ;ϑu(δ)|δ=ξ1=uξ1,Iξ1+1γ;ϑv(δ)|δ=ξ1=vξ1,uξ1,vξ1R, where HDξ1+λ,r;ϑ represent the ϑ-Hilfer fractional derivative of order λ and type r with λ(0,1),r(0,1]. Iξ1+1γ;ϑ is the ϑ-Riemann-Liouville fractional integral of order 1γ. And, ,g:×Ψ×ΨΨ are continuous and nonlinear functions on a Banach space Ψ. The linear function ϑ:R verifies ϑ(δ)0,δ.

In (Abdo et al., Citation2020), Abdo et al. studied the following system: {Dξ1+λ1,ζ1;ϑq(δ)=1(δ,p(δ)),ξ1<δξ2,ξ1>0,Dξ1+λ2,ζ2;ϑp(δ)=2(δ,q(δ)),ξ1<δξ2,ξ1>0,q(ξ2)=w1R,p(ξ2)=w2R, where 0<λȷ<1,0ζȷ1,Dξ1+λȷ,ζȷϑ(ȷ=1,2) is the ϑ-Hilfer fractional derivative of order λȷ and type ζȷ with respect to ϑ and :(ξ1,ξ2]×RR is a given function.

Motivated by the previously mentioned publications and with the intention of building upon prior achievements, we consider: (1) {(κHDξ1+ϖ1,ζ1;ϑp)(δ)=1(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ)),δ(ξ1,ξ2],(κHDξ1+ϖ2,ζ2;ϑq)(δ)=2(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ)),δ(ξ1,ξ2],(1) (2) {α1(Jξ1+κ(1θ1),κ;ϑp)(ξ1+)+α2(Jξ1+κ(1θ1),κ;ϑp)(ξ2)=α3,β1(Jξ1+κ(1θ2),κ;ϑq)(ξ1+)+β2(Jξ1+κ(1θ2),κ;ϑq)(ξ2)=β3,(2) where for ȷ=1,2,κHDξ1+ϖȷ,ζȷ;ϑ and Jξ1+κ(1θȷ),κ;ϑ are, respectively, the κ-generalized ϑ-Hilfer fractional derivative of order ϖȷ(0,κ) and type ζȷ[0,1], and κ-generalized ϑ-fractional integral of order κ(1θȷ), where θȷ=1κ(ζȷ(κϖȷ)+ϖȷ),κ>0,α3,β3k,α1,α2,β1,β2R such that α1+α20 and β1+β20, and ȷ:[ξ1,ξ2]×k4k are given functions, where (k,·) is a Banach space.

It is worth mentioning that our work is regarded as a logical extension and continuation on the results presented in the aforementioned works, specifically (Abdo et al., Citation2020; Ahmad et al., Citation2020). For more details on the particular cases of our problem, see (Benchohra et al., Citation2023a, Citation2023b).

The paper is organized as follows: In Section 2, we commence by introducing essential notations and providing an overview of the fundamentals associated with κ-generalized ϑ-Hilfer, as well as functions such as κ-Gamma, κ-Beta, κ-Mittag-Leffler, and various supporting results. Section 3 presents an existence result for the problem defined in EquationEquations (1)–Equation(2), employing the Mönch fixed point theorem and the measure of noncompactness technique. Additionally, in Section 4, we give the proof of the stability result for the system denoted by EquationEquations (1)–Equation(2). Finally, the last section is dedicated to offering a concrete illustrative example that effectively demonstrates the practical utility of our primary findings.

2. Preliminaries

We will commence by presenting the weighted spaces, notations, definitions, and fundamental concepts that will find application in this investigation. For more comprehensive information regarding the norms and definitions used, refer to the references such as (Salim et al., Citation2021, Citation2022), and (Kucche & Mali, Citation2021).

Let 0<ξ1<ξ2<,=[ξ1,ξ2], and let ϖ(0,κ),ζ[0,1],κ>0 and θ=1κ(ζ(κϖ)+ϖ).

By C(,k) we denote the Banach space of all continuous functions from into k with the norm p=sup{p(δ):δ}.

Let ACn(,k) and Cn(,k) be the spaces of n-times absolutely continuous and n-times continuously differentiable functions on , respectively.

Consider the weighted Banach space Cθ;ϑ()={p:(ξ1,ξ2]k:δΦθϑ(δ,ξ1)p(δ)C(,k)}, where Φθϑ(δ,ξ1)=(ϑ(δ)ϑ(ξ1))1θ, with the norm pCθ;ϑ=supδΦθϑ(δ,ξ1)p(δ), and Cθ;ϑn()={pCn1():p(n)Cθ;ϑ()},nN,Cθ;ϑ0()=Cθ;ϑ(), with the norm pCθ;ϑn=ȷ=0n1p(ȷ)+p(n)Cθ;ϑ.

Now, let us consider the Banach space Fθ1,θ2:=Cθ1;ϑ()×Cθ2;ϑ(), with the norm (p,q)Fθ1,θ2=max{pCθ1;ϑ,qCθ2;ϑ},

where 0<θ1,θ21.

By L1(), we denote the space of Bochner–integrable functions :k with the norm 1=ξ1ξ2(δ)dδ.

Definition 2.1

(Díaz and Teruel, Citation2005). The κ-gamma function is defined by Γκ(ξ)=0δξ1eδκκdδ,ξ>0.

When κ1 then Γ(ξ)=Γκ(ξ), and some other useful relations are Γκ(ξ)=κξκ1Γ(ξκ),Γκ(ξ+κ)=ξΓκ(ξ) and Γκ(κ)=1. Moreover, the κ-beta function is given as Bκ(ξ,γ)=1κ01δξκ1(1δ)γκ1dδ, so that Bκ(ξ,γ)=1κB(ξκ,γκ) and Bκ(ξ,γ)=Γκ(ξ)Γκ(γ)Γκ(ξ+γ). The Mittag-Leffler function can also be refined into the κ-Mittag-Leffler function defined as follows kκϖ,ζ(p)=ȷ=0pȷΓκ(ϖȷ+ζ),ϖ,ζ>0,

Then, we can have kκϖ(p)=kκϖ,κ(p)=ȷ=0pȷΓκ(ϖȷ+κ),ϖ>0.

Definition 2.2

(Rashid et al. Citation2020). Let ϑ(δ)>0 be an increasing function on (ξ1,ξ2] and ϑ(δ)>0 be continuous on (ξ1,ξ2), and ϖ>0. The generalized κ-fractional integral operators of a function ϰ of order ϖ is defined by: Jξ1+ϖ,κ;ϑϰ(δ)=ξ1δΦ¯ϖκ,ϑ(δ,s)ϑ(s)ϰ(s)ds, with κ>0 and Φ¯ϖκ,ϑ(δ,s)=(ϑ(δ)ϑ(s))ϖκ1κΓκ(ϖ).

Theorem 2.3

(Salim et al., Citation2021, Citation2022). Let ϰL1() and take ϖ>0 and κ>0. Then Jξ1+ϖ,κ;ϑϰC([ξ1,ξ2],R).

Lemma 2.4

(Salim et al., Citation2021, Citation2022). Let ϖ>0,ζ>0 and κ>0. Then, the semigroup properties that follow are met: Jξ1+ϖ,κ;ϑJξ1+ζ,κ;ϑϰ(δ)=Jξ1+ϖ+ζ,κ;ϑϰ(δ)=Jξ1+ζ,κ;ϑJξ1+ϖ,κ;ϑϰ(δ).

Lemma 2.5

(Salim et al., Citation2021, Citation2022). Let ϖ,ζ>0 and κ>0. Then, we obtain Jξ1+ϖ,κ;ϑΦ¯ζκ,ϑ(δ,ξ1)=Φ¯ϖ+ζκ,ϑ(δ,ξ1).

Theorem 2.6

(Salim et al., Citation2021, Citation2022). Let 0<ξ1<ξ2<,ϖ,ζ>0,0<θ=1κ(ζ(κϖ)+ϖ)1,κ>0 and pCθ;ϑ(). If ϖκ>1θ, then (Jξ1+ϖ,κ;ϑp)(ξ1)=limδξ1+(Jξ1+ϖ,κ;ϑp)(δ)=0.

Definition 2.7

(κ-generalized ϑ-Hilfer derivative (Salim et al., Citation2021, Citation2022). Let m1<ϖκm with mN,ξ1<ξ2 and ϰ,ϑCm([ξ1,ξ2],R) two functions where ϑ is increasing and ϑ(δ)0, for all δ. The κ-generalized ϑ-Hilfer fractional derivatives κHDξ1+ϖ,ζ;ϑ(·) of a function ϰ of order ϖ and type 0ζ1, with κ>0 is given by: κHDξ1+ϖ,ζ;ϑϰ(δ)=(Jξ1+ζ(kmϖ),κ;ϑ(1ϑ(δ)ddδ)m(κmJξ1+(1ζ)(kmϖ),κ;ϑϰ))(δ)=(Jξ1+ζ(kmϖ),κ;ϑεϑm(κmJξ1+(1ζ)(kmϖ),κ;ϑϰ))(δ),

where εϑm=(1ϑ(δ)ddδ)m.

Lemma 2.8

(Salim et al., Citation2021, Citation2022). Let δ>ξ1, 0<ϖκ<1,0ζ1,κ>0. Then for 0<θ<1;θ=1κ(ζ(κϖ)+ϖ), we have [κHDξ1+ϖ,ζ;ϑ(Φθϑ(s,ξ1))1](δ)=0.

Theorem 2.9

(Salim et al., Citation2021, Citation2022). If ϰCθ;ϑm[ξ1,ξ2],m1<ϖκ<m,0ζ1, where mN and κ>0, then (Jξ1+ϖ,κ;ϑκHDξ1+ϖ,ζ;ϑϰ)(δ)=ϰ(δ)ȷ=1m(ϑ(δ)ϑ(ξ1))θȷκȷmΓκ(κ(θȷ+1)){εϑmȷ(Jξ1+κ(mθ),κ;ϑϰ(ξ1))}, where θ=1κ(ζ(kmϖ)+ϖ).

If m = 1, we have (Jξ1+ϖ,κ;ϑκHDξ1+ϖ,ζ;ϑϰ)(δ)=ϰ(δ)(ϑ(δ)ϑ(ξ1))θ1Γκ(ζ(κϖ)+ϖ)Jξ1+(1ζ)(κϖ),κ;ϑϰ(ξ1).

Lemma 2.10

(Salim et al., Citation2021, Citation2022). Let ϖ>0,0ζ1, and pCθ;ϑ1(), where κ>0. Then for δ(ξ1,ξ2], we have (κHDξ1+ϖ,ζ;ϑJξ1+ϖ,κ;ϑp)(δ)=p(δ).

Lemma 2.11

(Benchohra et al., Citation2023a). Let ϖ>0 and κ>0. Then, we have Ja+ϖ,κ;ϑkκϖ((ϑ(δ)ϑ(a))ϖκ)=kκϖ((ϑ(δ)ϑ(a))ϖκ)1.

Theorem 2.12

(Benchohra et al., Citation2023a). Let p, q be two integrable functions and g continuous, with domain [ξ1,ξ2]. Let ϑC1[ξ1,ξ2] an increasing function such that ϑ(δ)0,δ[ξ1,ξ2] and ϖ>0 with κ>0. Assume that

  1. p and q are nonnegative;

  2. w is nonnegative and nondecreasing.

If p(δ)q(δ)+w(δ)κξ1δϑ(s)[ϑ(δ)ϑ(s)]ϖκ1p(s)ds, then (3) p(δ)q(δ)+ξ1δȷ=1[w(δ)Γκ(ϖ)]ȷκΓκ(ϖȷ)ϑ(s)[ϑ(δ)ϑ(s)]ȷϖκ1q(s)ds,(3) For all δ[ξ1,ξ2]. And if q is a nondecreasing function on [ξ1,ξ2]. Then, we have p(δ)q(δ)kκϖ(w(δ)Γκ(ϖ)(ϑ(δ)ϑ(ξ1))ϖκ).

Definition 2.13

(Banas & Goebel, Citation1980). let Ψ be a Banach space and let ΩΨ be the family of bounded subsets of Ψ. The Kuratowski measure of noncompactness is the map μ:ΩΨ[0,) defined by μ(Ϝ)=inf{ϵ>0:Ϝj=1mϜj,diam(Ϝj)ϵ}, where ϜΩΨ and μ verifies:

  • μ(Ϝ)=0Ϝ¯ is compact (Ϝ is relatively compact).

  • μ(Ϝ)=μ(Ϝ¯).

  • Ϝ1Ϝ2μ(Ϝ1)μ(Ϝ2).

  • μ(Ϝ1+Ϝ2)μ(B1)+μ(B2).

  • μ(cϜ)=|c|μ(Ϝ),cR.

  • μ(convϜ)=μ(Ϝ).

3. Existence of solutions

Firstly, we provide the following theorem in order to convert our system Equation(1)Equation(2) into a coupled system of fractional integral equations.

Theorem 3.1.

Let θ=ζ(κϖ)+ϖκ, where κ>0,0<ϖ<κ,0ζ1, and let φ(·)C(,k). The function p verifies: (4) (κHDξ1+ϖ,ζ;ϑp)(δ)=φ(δ),δ(ξ1,ξ2],(4) (5) α1(Jξ1+κ(1θ1),κ;ϑp)(ξ1+)+α2(Jξ1+κ(1θ1),κ;ϑp)(ξ2)=α3,(5)

If and only if it verifies the following integral equation: (6) p(δ)=α3α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2)(α1+α2)Γκ(κθ)Φθϑ(δ,ξ1)+(Jξ1+ϖ,κ;ϑφ)(δ),δ(ξ1,ξ2],(6) where α1,α2R such that α1+α20 and α3k.

Proof.

Assume that p satisfies the Equationequations Equation(4)Equation-(5). We apply Jξ1+ϖ,κ;ϑ(·) on both sides of Equation(4) to obtain (Jξ1+ϖ,κ;ϑκHDξ1+ϖ,ζ;ϑp)(δ)=(Jξ1+ϖ,κ;ϑφ)(δ), and using Theorem 2.9, we get (7) p(δ)=Jξ1+κ(1θ),κ;ϑp(ξ1)Φθϑ(δ,ξ1)Γκ(κθ)+(Jξ1+ϖ,κ;ϑφ)(δ).(7)

Applying Jξ1+κ(1θ),κ;ϑ(·) on both sides of Equation(7), using Lemma 2.4, Lemma 2.5 and taking δ=ξ2, we have (8) (Jξ1+κ(1θ),κ;ϑp)(ξ2)=Jξ1+κ(1θ),κ;ϑp(ξ1)+(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2).(8)

Multiplying both sides of Equation(8) by α2, we get α2(Jξ1+κ(1θ),κ;ϑp)(ξ2)=α2Jξ1+κ(1θ),κ;ϑp(ξ1)+α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2).

Using condition Equation(5), we obtain α2(Jξ1+κ(1θ),κ;ϑp)(ξ2)=α3α1(Jξ1+κ(1θ),κ;ϑp)(ξ1+).

Thus, α3α1(Jξ1+κ(1θ),κ;ϑp)(ξ1+)=α2Jξ1+κ(1θ),κ;ϑp(ξ1)+α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2). Then, (9) (Jξ1+κ(1θ),κ;ϑp)(ξ1+)=α3α1+α2α2α1+α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2).(9)

Substituting Equation(9) into Equation(7), we obtain Equation(6).

Now, we show that if p verifies EquationEquation (6), then it verifies Equation(4)-(5). We apply κHDξ1+ϖ,ζ;ϑ(·) on Equation(6) to get (κHDξ1+ϖ,ζ;ϑp)(δ) =κHDξ1+ϖ,ζ;ϑ(α3α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2)(α1+α2)Γκ(κθ)Φθϑ(δ,ξ1))+(κHDξ1+ϖ,ζ;ϑJξ1+ϖ,κ;ϑφ)(δ).

By Lemma 2.8 and Lemma 2.10, we get Equation(4). Now we apply the operator Jξ1+κ(1θ),κ;ϑ(·) to EquationEquation (6), to obtain (Jξ1+κ(1θ),κ;ϑp)(δ)=Jξ1+κ(1θ),κ;ϑ(α3α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2)(α1+α2)Γκ(κθ)Φθϑ(δ,ξ1))+(Jξ1+κ(1θ),κ;ϑJξ1+ϖ,κ;ϑφ)(δ).

Now, using Lemma 2.4 and 2.5, we get (10) (Jξ1+κ(1θ),κ;ϑp)(δ)=α3α1+α2α2α1+α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2)+(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(δ).(10)

Using Theorem 2.6 with δξ1, we obtain (11) (Jξ1+κ(1θ),κ;ϑp)(ξ1+)=α3α1+α2α2α1+α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2).(11)

Next, taking δ=ξ2 in Equation(10), we have (12) (Jξ1+κ(1θ),κ;ϑp)(ξ2)=α3α1+α2α2α1+α2(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2)+(Jξ1+κ(1θ)+ϖ,κ;ϑφ)(ξ2).(12)

From Equation(11) and Equation(12), we obtain Equation(5). This completes the proof. □

As a consequence of Theorem 3.1, we have the following result.

Lemma 3.2.

Let ȷ=1,2,θȷ=ζȷ(κϖȷ)+ϖȷκ where 0<ϖȷ<κ and 0ζȷ1, and let ȷ:×k4k be continuous functions. Then (p,q)Fθ1,θ2 satisfies the coupled system Equation(1)-(2) if and only if (p,q) is the fixed point of the operator R:Fθ1,θ2Fθ1,θ2 defined by: (13) R(p,q)(δ)=(R1(p,q)(δ),R2(p,q)(δ)),δ(ξ1,ξ2],(13) where R1 and R2 are the operators defined for δ(ξ1,ξ2], as follows: (14) R1(p,q)(δ)=α3α2(Jξ1+κ(1θ1)+ϖ1,κ;ϑφ1(s))(ξ2)(α1+α2)Γκ(κθ1)Φθ1ϑ(δ,ξ1)+(Jξ1+ϖ1,κ;ϑφ1(s))(δ),(14) and (15) R2(p,q)(δ)=β3β2(Jξ1+κ(1θ2)+ϖ2,κ;ϑφ2(s))(ξ2)(β2+β2)Γκ(κθ2)Φθ2ϑ(δ,ξ1)+(Jξ1+ϖ2,κ;ϑφ2(s))(δ),(15) where for ȷ=1,2, φȷC(,k) satisfy the following system of functional equations: {φ1(δ)=1(δ,p(δ),q(δ),φ1(δ),φ2(δ)),φ2(δ)=2(δ,p(δ),q(δ),φ1(δ),φ2(δ)).

We may employ Theorem 2.3 to easily demonstrate that for (p,q)Fθ1,θ2, we have R(p,q)Fθ1,θ2, where R is the operator defined in Equation(13).

The hypotheses:

  • (Cd1) The functions ȷ:×k4k;ȷ=1,2, are continuous.

  • (Cd2) There exist constants ȷ,Iȷ,¯ȷ,I¯ȷ>0 such that 0<¯1<1,0<I¯2<1 and 1(δ,p1,q1,w1,z1)1(δ,p2,q2,w2,z2)1Φθ1ϑ(δ,ξ1)p1p2+I1Φθ2ϑ(δ,ξ1)q1q2+¯1w1w2+I¯1z1z2 and 2(δ,p1,q1,w1,z1)2(δ,p2,q2,w2,z2)2Φθ1ϑ(δ,ξ1)p1p2+I2Φθ2ϑ(δ,ξ1)q1q2+¯2w1w2+I¯2z1z2 For any pȷ,qȷ,wȷ,zȷR and δ(ξ1,ξ2], where ȷ=1,2.

  • (Cd3) For each bounded sets Ω and for each δ, the following inequalities hold: μ(1(δ,Ω,Ω,κHDξ1+ϖ1,ζ1;ϑΩ,κHDξ1+ϖ2,ζ2;ϑΩ))3Φθ1ϑ(δ,ξ1)μ(Ω) and μ(2(δ,Ω,Ω,κHDξ1+ϖ1,ζ1;ϑΩ,κHDξ1+ϖ2,ζ2;ϑΩ))4Φθ2ϑ(δ,ξ1)μ(Ω), where κHDξ1+ϖȷ,ζȷ;ϑΩ={κHDξ1+ϖȷ,ζȷ;ϑw:wΩ};ȷ=1,2.

Set the following: ε1=max{L1,L2},ε2=max{L3,L4} and ε3=L5+L6, such that L1=[|α2|(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κ|α1+α2|Γκ(κθ1)Γκ(2kκθ1+ϖ1)+(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κΓκ(ϖ1+κ)]×[2I¯1+1(1I¯2)(1I¯2)(1¯1)¯2I¯1], L2=[|β2|(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κ|β2+β2|Γκ(κθ2)Γκ(2kκθ2+ϖ2)+(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κΓκ(ϖ2+κ)]×[2(1¯1)+1¯2(1¯1)(1I¯2)I¯1¯2], L3=[|α2|(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κ|α1+α2|Γκ(κθ1)Γκ(2kκθ1+ϖ1)+(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κΓκ(ϖ1+κ)]×[I2I¯1+I1(1I¯2)(1I¯2)(1¯1)¯2I¯1], L4=[|β2|(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κ|β2+β2|Γκ(κθ2)Γκ(2kκθ2+ϖ2)+(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κΓκ(ϖ2+κ)]×[I2(1¯1)+I1¯2(1¯1)(1I¯2)I¯1¯2], L5=[|α2|(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κ|α1+α2|Γκ(κθ1)Γκ(2kκθ1+ϖ1)+(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κΓκ(ϖ1+κ)]×[*I¯1+*(1I¯2)(1I¯2)(1¯1)¯2I¯1]+α3|α1+α2|Γκ(κθ1), L6=[|β2|(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κ|β2+β2|Γκ(κθ2)Γκ(2kκθ2+ϖ2)+(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κΓκ(ϖ2+κ)]×[*(1¯1)+*¯2(1¯1)(1I¯2)I¯1¯2]+β3|β2+β2|Γκ(κθ2), and *=supδ(δ,0,0,0,0).

Theorem 3.3.

Suppose that the hypotheses (Cd1)-(Cd3) hold. If (16) l=max{ε1+ε2,3(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κΓκ(ϖ1+κ),4(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κΓκ(ϖ2+κ),¯2I¯1(1I¯2)(1¯1)}<1,(16)

then problem Equation(1)-(2) has at least one solution in Fθ1,θ2.

Proof.

The proof will be given in several steps.

Claim 1: We show that the operator R defined in Equation(13), transforms the ball Bε=B(0,ε)={(p,q)Fθ1,θ2:(p,q)Fθ1,θ2ε} into itself. Let εa positive constant such that εε31ε1ε2.

For each δ(ξ1,ξ2], Equation(14) and Equation(15) imply that we have (17) R1(p,q)(δ)α3+|α2|(Jξ1+κ(1θ1)+ϖ1,κ;ϑφ1(s))(ξ2)|α1+α2|Γκ(κθ1)Φθ1ϑ(δ,ξ1)+(Jξ1+ϖ1,κ;ϑφ1(s))(δ),(17) and (18) R2(p,q)(δ)β3+|β2|(Jξ1+κ(1θ2)+ϖ2,κ;ϑφ2(s))(ξ2)(β2+β2)Γκ(κθ2)Φθ2ϑ(δ,ξ1)+(Jξ1+ϖ2,κ;ϑφ2(s))(δ).(18) By the hypothesis (Cd2), for δ(ξ1,ξ2], we have φ1(δ)=1(δ,p(δ),q(δ),φ1(δ),φ2(δ))(δ,0,0,0,0)+(δ,0,0,0,0)1Φθ1ϑ(δ,ξ1)p(δ)+I1Φθ2ϑ(δ,ξ1)q(δ)+¯1φ1(δ)+I¯1φ2(δ)+*, Which implies that φ1(δ)11¯1pCθ1;ϑ+I11¯1qCθ2;ϑ+I¯11¯1φ2(δ)+*1¯1.

Similarly, one can find that φ2(δ)21I¯2pCθ1;ϑ+I21I¯2qCθ2;ϑ+¯21I¯2φ1(δ)+*1I¯2.

Therefore φ1(δ)11¯1p||Cθ1;ϑ+I11¯1q||Cθ2;ϑ+*1¯1+2I¯1(1I¯2)(1¯1)p||Cθ1;ϑ+I2I¯1(1I¯2)(1¯1)q||Cθ2;ϑ+¯2I¯1(1I¯2)(1¯1)φ1(δ)+*I¯1(1I¯2)(1¯1),

Then φ1(δ)2I¯1+1(1I¯2)(1I¯2)(1¯1)¯2I¯1p||Cθ1;ϑ+I2I¯1+I1(1I¯2)(1I¯2)(1¯1)¯2I¯1q||Cθ2;ϑ+*I¯1+*(1I¯2)(1I¯2)(1¯1)¯2I¯1.

By following the same approach, we can also obtain the following: φ2(δ)2(1¯1)+1¯2(1¯1)(1I¯2)I¯1¯2p||Cθ1;ϑ+I2(1¯1)+I1¯2(1¯1)(1I¯2)I¯1¯2q||Cθ2;ϑ+*(1¯1)+*¯2(1¯1)(1I¯2)I¯1¯2.

Thus, by the hypothesis (Cd2), for δ(ξ1,ξ2], we have Φθ1ϑ(δ,ξ1)R1(p,q)(δ)α3+|α2|(Jξ1+κ(1θ1)+ϖ1,κ;ϑφ1(s))(ξ2)|α1+α2|Γκ(κθ1)+Φθ1ϑ(δ,ξ1)(Jξ1+ϖ1,κ;ϑφ1(s))(δ), and Φθ2ϑ(δ,ξ1)R2(p,q)(δ)β3+|β2|(Jξ1+κ(1θ2)+ϖ2,κ;ϑφ2(s))(ξ2)|β2+β2|Γκ(κθ2)+Φθ2ϑ(δ,ξ1)(Jξ1+ϖ2,κ;ϑφ2(s))(δ), which implies Φθ1ϑ(δ,ξ1)R1(p,q)(δ)[2I¯1+1(1I¯2)(1I¯2)(1¯1)¯2I¯1p||Cθ1;ϑ+I2I¯1+I1(1I¯2)(1I¯2)(1¯1)¯2I¯1q||Cθ2;ϑ+*I¯1+*(1I¯2)(1I¯2)(1¯1)¯2I¯1]×(|α2|(Jξ1+κ(1θ1)+ϖ1,κ;ϑ(1))(ξ2)|α1+α2|Γκ(κθ1)+Φθ1ϑ(δ,ξ1)(Jξ1+ϖ1,κ;ϑ(1))(δ))+α3|α1+α2|Γκ(κθ1), and Φθ2ϑ(δ,ξ1)R2(p,q)(δ)[2(1¯1)+1¯2(1¯1)(1I¯2)I¯1¯2p||Cθ1;ϑ+I2(1¯1)+I1¯2(1¯1)(1I¯2)I¯1¯2q||Cθ2;ϑ+*(1¯1)+*¯2(1¯1)(1I¯2)I¯1¯2]×(|β2|(Jξ1+κ(1θ2)+ϖ2,κ;ϑ(1))(ξ2)|β2+β2|Γκ(κθ2)+Φθ2ϑ(δ,ξ1)(Jξ1+ϖ2,κ;ϑ(1))(δ))+β3|β2+β2|Γκ(κθ2).

Lemma 2.5 implies Φθ1ϑ(δ,ξ1)R1(p,q)(δ)[2I¯1+1(1I¯2)(1I¯2)(1¯1)¯2I¯1p||Cθ1;ϑ+I2I¯1+I1(1I¯2)(1I¯2)(1¯1)¯2I¯1q||Cθ2;ϑ+*I¯1+*(1I¯2)(1I¯2)(1¯1)¯2I¯1](ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κ×[|α2||α1+α2|Γκ(κθ1)Γκ(2kκθ1+ϖ1)+1Γκ(ϖ1+κ)]+α3|α1+α2|Γκ(κθ1), and Φθ2ϑ(δ,ξ1)R2(p,q)(δ)[2(1¯1)+1¯2(1¯1)(1I¯2)I¯1¯2p||Cθ1;ϑ+I2(1¯1)+I1¯2(1¯1)(1I¯2)I¯1¯2q||Cθ2;ϑ+*(1¯1)+*¯2(1¯1)(1I¯2)I¯1¯2](ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κ×[|β2||β2+β2|Γκ(κθ2)Γκ(2kκθ2+ϖ2)+1Γκ(ϖ2+κ)]+β3|β2+β2|Γκ(κθ2).

Thus, R1(p,q)(δ)Cθ1;ϑε1pCθ1;ϑ+ε2qCθ2;ϑ+L5, and R2(p,q)(δ)Cθ2;ϑε1pCθ1;ϑ+ε2qCθ2;ϑ+L6.

Thus, for each δ(ξ1,ξ2] we get R(p,q)Fθ1,θ2(ε1+ε2)ε+ε3ε.

Claim 2: The operator R:BεBε is continuous.

Let {(pn,qn)} be a sequence where (pn,qn)(p,q) in Fθ1,θ2. For each δ(ξ1,ξ2], we have R1(pn,qn)(δ)R1(p,q)(δ)|α2|(Jξ1+κ(1θ1)+ϖ1,κ;ϑφ1,n(s)φ1(s))(ξ2)|α1+α2|Γκ(κθ1)Φθ1ϑ(δ,ξ1)+(Jξ1+ϖ1,κ;ϑφ1,n(s)φ1(s))(δ), and R2(pn,qn)(δ)R2(p,q)(δ)|β2|(Jξ1+κ(1θ2)+ϖ2,κ;ϑφ2,n(s)φ2(s))(ξ2)|β2+β2|Γκ(κθ2)Φθ2ϑ(δ,ξ1)+(Jξ1+ϖ2,κ;ϑφ2,n(s)φ2(s))(δ), where for ȷ=1,2, φȷ and φȷ,n verifies: {φ1(δ)=1(δ,p(δ),q(δ),φ1(δ),φ2(δ)),φ2(δ)=2(δ,p(δ),q(δ),φ1(δ),φ2(δ)), and {φ1,n(δ)=1(δ,pn(δ),qn(δ),φ1,n(δ),φ2,n(δ)),φ2,n(δ)=2(δ,pn(δ),qn(δ),φ1,n(δ),φ2,n(δ)).

Since (pn,qn)(p,q), then φ1,n(δ)φ1(δ) and φ2,n(δ)φ2(δ), as n for each δ(ξ1,ξ2], and since 1 and 2 are continuous, then we have R1(pn,qn)R1(p,q)Cθ1;ϑ0 and R2(pn,qn)R2(p,q)Cθ2;ϑ0 as n.

Thus, for each δ(ξ1,ξ2], we get R(pn,qn)R(p,q)Fθ1,θ20 as n.

Consequently, R is continuous.

Claim 3: R(Bε) is bounded and equicontinuous.

Since R(Bε)Bε and Bε is bounded, then R(Bε) is bounded.

Let ϱ1,ϱ2(ξ1,ξ2],ϱ1<ϱ2 and let (p,q)Bε. Thus Φθ1ϑ(ϱ1,ξ1)R1(p,q)(ϱ1)Φθ1ϑ(ϱ2,ξ1)R1(p,q)(ϱ2)Φθ1ϑ(ϱ1,ξ1)(Jξ1+ϖ1,κ;ϑφ1(s))(ϱ1)Φθ1ϑ(ϱ2,ξ1)(Jξ1+ϖ1,κ;ϑφ1(s))(ϱ2)ξ1ϱ1Φθ1ϑ(ϱ1,ξ1)Φ¯ϖ1κ,ϑ(ϱ1,s)Φθ1ϑ(ϱ2,ξ1)Φ¯ϖ1κ,ϑ(ϱ2,s)ϑ(s)φ1(s)ds+Φθ1ϑ(ϱ2,ξ1)(Jϱ1+ϖ1,κ;ϑφ1(s))(ϱ2), and Φθ2ϑ(ϱ1,ξ1)R2(p,q)(ϱ1)Φθ2ϑ(ϱ2,ξ1)R2(p,q)(ϱ2)Φθ2ϑ(ϱ1,ξ1)(Jξ1+ϖ2,κ;ϑφ2(s))(ϱ1)Φθ2ϑ(ϱ2,ξ1)(Jξ1+ϖ2,κ;ϑφ2(s))(ϱ2)ξ1ϱ1Φθ2ϑ(ϱ1,ξ1)Φ¯ϖ2κ,ϑ(ϱ1,s)Φθ2ϑ(ϱ2,ξ1)Φ¯ϖ2κ,ϑ(ϱ2,s)ϑ(s)φ2(s)ds+Φθ2ϑ(ϱ2,ξ1)(Jϱ1+ϖ2,κ;ϑφ2(s))(ϱ2).

Lemma 2.5 implies Φθ1ϑ(ϱ1,ξ1)R1(p,q)(ϱ1)Φθ1ϑ(ϱ2,ξ1)R1(p,q)(ϱ2)εξ1ϱ1Φθ1ϑ(ϱ1,ξ1)Φ¯ϖ1κ,ϑ(ϱ1,s)Φθ1ϑ(ϱ2,ξ1)Φ¯ϖ1κ,ϑ(ϱ2,s)ϑ(s)ds+εΦθ1ϑ(ϱ2,ξ1)(ϑ(ϱ2)ϑ(ϱ1))ϖ1κΓκ(ϖ1+κ), and Φθ2ϑ(ϱ1,ξ1)R2(p,q)(ϱ1)Φθ2ϑ(ϱ2,ξ1)R2(p,q)(ϱ2)εξ1ϱ1Φθ2ϑ(ϱ1,ξ1)Φ¯ϖ2κ,ϑ(ϱ1,s)Φθ2ϑ(ϱ2,ξ1)Φ¯ϖ2κ,ϑ(ϱ2,s)ϑ(s)ds+εΦθ2ϑ(ϱ2,ξ1)(ϑ(ϱ2)ϑ(ϱ1))ϖ2κΓκ(ϖ2+κ).

As ϱ1ϱ2, the right-hand side of the above inequalities tends to zero. This shows the equicontinuity of R(Bε).

Step 4: The implication of Mönch’s fixed point Theorem (Mönch, 1980) holds.

Now let Λ=Λ1Λ2 be an equicontinuous subset of Bε such that ΛȷTȷ(Λȷ)¯{0};ȷ=1,2, therefore the function δdȷ(δ)=μ(Λȷ(δ)) are continuous on (ξ1,ξ2]. By the hypotheses (Cd3) and the properties of the measure μ, for each δ(ξ1,ξ2], we have Φθ1ϑ(δ,ξ1)d1(δ)μ(Φθ1ϑ(δ,ξ1)(R1Λ1)(δ){0})μ(Φθ1ϑ(δ,ξ1)(R1Λ1)(δ))Φθ1ϑ(δ,ξ1)(Jξ1+ϖ1,κ;ϑ3Φθ1ϑ(δ,ξ1)μ(Λ1(s)))(δ)3d1Cθ1;ϑ[(ϑ(ξ2)ϑ(ξ1))1θ1+ϖ1κΓκ(ϖ1+κ)], which implies that d1Cθ1;ϑld1Cθ1;ϑ.

From Equation(16), we get d1Cθ1;ϑ=0, that is d1(δ)=μ(Λ1(δ))=0, for each δ. Similarly, we have d2Cθ2;ϑ4(ϑ(ξ2)ϑ(ξ1))1θ2+ϖ2κΓκ(ϖ2+κ)d2Cθ2;ϑld2Cθ2;ϑ, that is d1(δ)=μ(Λ1(δ))=0. Thus, μ(Λ(δ))μ(Λ1(δ))=0 and μ(Λ(δ))μ(Λ2(δ))=0, which means that Λ(δ) is relatively compact in k×k. In view of the Ascoli-Arzela Theorem, Λ is relatively compact in BR. Applying now Mönch’s fixed point Theorem (Mönch, 1980), we conclude that R has a fixed point, which is a solution to the system Equation(1)Equation(2).

4. κ-Mittag-Leffler-Ulam-Hyers stability

Now, we consider the κ-Mittag-Leffler-Ulam-Hyers stability for system Equation(1)-(2). In (Liu et al., Citation2019), Liu et al. introduced the concept of Ulam-Hyers-Mittag-Leffler which is suitable to describe the characteristic of fractional Ulam stability, by substituting the Mittag-Leffler function of their definitions with the more refined κ-Mittag-Leffler function, we give the following definitions. For this, we take inspiration from the following papers (Ali et al., Citation2017, Citation2019; Rassias, Citation1978; Rus, Citation2009) and the references therein. Let (p,q)Fθ1,θ2,ϵ1,ϵ2>0. We consider the following inequalities: (19) {(κHDξ1+ϖ1,ζ1;ϑp)(δ)1(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ))    ϵ1kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ),δ,(κHDξ1+ϖ2,ζ2;ϑp)(δ)2(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ))    ϵ1kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ),δ.(19)

Definition 4.1.

System Equation(1)-(2) is κ-Mittag-Leffler-Ulam-Hyers stable with respect to (kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ);kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)) if there exists a real number akκϖ>0 such that for each ϵ=max{ϵ1,ϵ2}>0 and for each solution (p,q)Fθ1,θ2 of inequality Equation(19) there exists a solution (p¯,q¯)Fθ1,θ2 of Equation(1)-(2) with (p,q)(δ)(p¯,q¯)(δ)ϵakκϖ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)],δ.

Definition 4.2.

System Equation(1)-(2) is generalized κ-Mittag-Leffler-Ulam-Hyers stable with respect to (kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ);kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)) if there exists v:C([0,),[0,)) with v(0)=0 such that for each ϵ=max{ϵ1,ϵ2}>0 and for each solution (p,q)Fθ1,θ2 of inequality Equation(19) there exists a solution (p¯,q¯)Fθ1,θ2 of Equation(1)-(2) with (p,q)(δ)(p¯,q¯)(δ)v(ϵ)[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)],δ.

Remark 4.3.

It is clear that: Definition 4.1 Definition 4.2

Remark 4.4.

A function (p,q)Fθ1,θ2 is a solution of inequality Equation(19) if and only if there exist υ1,υ2Fθ1,θ2 such that

  1. υ1(δ)ϵ1kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ) and υ2(δ)ϵ2kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ),δ.

  2. (κHDξ1+ϖ1,ζ1;ϑp)(δ)=1(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ))+υ1(δ), δ.

  3. (κHDξ1+ϖ2,ζ2;ϑq)(δ)=2(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ))+υ2(δ), δ.

Theorem 4.5.

Assume that the hypotheses (Cd1)-(Cd3) and the condition Equation(16) hold. Then, system Equation(1)-(2) is κ-Mittag-Leffler-Ulam-Hyers stable with respect to χ(δ) and consequently generalized κ-Mittag-Leffler-Ulam-Hyers stable.

Proof.

Let (p,q)Fθ1,θ2 be a solution if inequality Equation(19), and let us assume that (p¯,q¯) is the unique solution of the system {(κHDξ1+ϖ1,ζ1;ϑp¯)(δ)=1(δ,p¯(δ),q¯(δ),(κHDξ1+ϖ1,ζ1;ϑp¯)(δ),(κHDξ1+ϖ2,ζ2;ϑq¯)(δ)),(κHDξ1+ϖ2,ζ2;ϑq¯)(δ)=2(δ,p¯(δ),q¯(δ),(κHDξ1+ϖ1,ζ1;ϑp¯)(δ),(κHDξ1+ϖ2,ζ2;ϑq¯)(δ)),α1(Jξ1+κ(1θ1),κ;ϑp¯)(ξ1+)+α2(Jξ1+κ(1θ1),κ;ϑp¯)(ξ2)=α3,β1(Jξ1+κ(1θ2),κ;ϑq¯)(ξ1+)+β2(Jξ1+κ(1θ2),κ;ϑq¯)(ξ2)=β3,(Jξ1+κ(1θ1),κ;ϑp¯)(ξ1+)=(Jξ1+κ(1θ1),κ;ϑp)(ξ1+),(Jξ1+κ(1θ2),κ;ϑq¯)(ξ1+)=(Jξ1+κ(1θ2),κ;ϑq)(ξ1+).

By Theorem 3.1, we obtain for each δ p¯(δ)=α3α2(Jξ1+κ(1θ1)+ϖ1,κ;ϑφ¯1(s))(ξ2)(α1+α2)Γκ(κθ1)Φθ1ϑ(δ,ξ1)+(Jξ1+ϖ1,κ;ϑφ¯1(s))(δ), and q¯(δ)=β3β2(Jξ1+κ(1θ2)+ϖ2,κ;ϑφ¯2(s))(ξ2)(β2+β2)Γκ(κθ2)Φθ2ϑ(δ,ξ1)+(Jξ1+ϖ2,κ;ϑφ¯2(s))(δ), where for ȷ=1,2; φ¯ȷC(,R) satisfy the following system of functional equations: {φ¯1(δ)=1(δ,p¯(δ),q¯(δ),φ¯1(δ),φ¯2(δ)),φ¯2(δ)=2(δ,p¯(δ),q¯(δ),φ¯1(δ),φ¯2(δ)).

Since (p,q) is a solution of the inequality Equation(19), by Remark 4.4, we have (20) {(κHDξ1+ϖ1,ζ1;ϑp)(δ)=1(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ))+υ1(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ)=2(δ,p(δ),q(δ),(κHDξ1+ϖ1,ζ1;ϑp)(δ),(κHDξ1+ϖ2,ζ2;ϑq)(δ))+υ2(δ).(20)

Clearly, from Equation(20) we can obtain p(δ)=α3α2(Jξ1+κ(1θ1)+ϖ1,κ;ϑ(φ1(s)+υ1(s)))(ξ2)(α1+α2)Γκ(κθ1)Φθ1ϑ(δ,ξ1)+(Jξ1+ϖ1,κ;ϑ(φ1(s)+υ1(s)))(δ), and q(δ)=β3β2(Jξ1+κ(1θ2)+ϖ2,κ;ϑ(φ2(s)+υ2(s)))(ξ2)(β2+β2)Γκ(κθ2)Φθ2ϑ(δ,ξ1)+(Jξ1+ϖ2,κ;ϑ(φ2(s)+υ2(s)))(δ), where for ȷ=1,2; φȷC(,R) satisfy the following system of functional equations: {φ1(δ)=1(δ,p(δ),q(δ),φ1(δ),φ2(δ)),φ2(δ)=2(δ,p(δ),q(δ),φ1(δ),φ2(δ)).

Hence, using Lemma 2.11, for each δ we have p(δ)p¯(δ)(Jξ1+ϖ1,κ;ϑφ1(s)φ¯1(s))(δ)+(Jξ1+ϖ1,κ;ϑυ1)(δ)ϵJξ1+ϖ1,κ;ϑkκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+(Jξ1+ϖ1,κ;ϑφ1(s)φ¯1(s))(δ)ϵkκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+(Jξ1+ϖ1,κ;ϑφ1(s)φ¯1(s))(δ), and q(δ)q¯(δ)(Jξ1+ϖ2,κ;ϑφ2(s)φ¯2(s))(δ)+(Jξ1+ϖ2,κ;ϑυ2)(δ)ϵJξ1+ϖ2,κ;ϑkκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)+(Jξ1+ϖ2,κ;ϑφ2(s)φ¯2(s))(δ)ϵkκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)+(Jξ1+ϖ2,κ;ϑφ2(s)φ¯2(s))(δ).

By the hypothesis (Cd2), for δ(ξ1,ξ2], we have φ1(δ)φ¯1(δ)=1(δ,p(δ),q(δ),φ1(δ),φ2(δ))1(δ,p¯(δ),q¯(δ),φ¯1(δ),φ¯2(δ))1Φθ1ϑ(δ,ξ1)p(δ)p¯(δ)+I1Φθ2ϑ(δ,ξ1)q(δ)q¯(δ)+¯1φ1(δ)φ¯1(δ)+I¯1φ2(δ)φ¯2(δ), which implies that φ1(δ)φ¯1(δ)1Φθ1ϑ(ξ2,ξ1)1¯1p(δ)p¯(δ)+I1Φθ2ϑ(ξ2,ξ1)1¯1q(δ)q¯(δ)+I¯11¯1φ2(δ)φ¯2(δ).

Similarly, one can find that φ2(δ)φ¯2(δ)2Φθ1ϑ(ξ2,ξ1)1I¯2p(δ)p¯(δ)+I2Φθ2ϑ(ξ2,ξ1)1I¯2q(δ)q¯(δ)+¯21I¯2φ1(δ)φ¯1(δ).

Therefore, φ1(δ)φ¯1(δ)1Φθ1ϑ(ξ2,ξ1)1¯1p(δ)p¯(δ)+I1Φθ2ϑ(ξ2,ξ1)1¯1q(δ)q¯(δ)+2I¯1Φθ1ϑ(ξ2,ξ1)(1I¯2)(1¯1)p(δ)p¯(δ)+I2I¯1Φθ2ϑ(ξ2,ξ1)(1I¯2)(1¯1)q(δ)q¯(δ)+¯2I¯1(1I¯2)(1¯1)φ1(δ).

Then, φ1(δ)φ¯1(δ)[2I¯1+1(1I¯2)]Φθ1ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1p(δ)p¯(δ)+[I2I¯1+I1(1I¯2)]Φθ2ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1q(δ)q¯(δ).

Also, φ2(δ)φ¯2(δ)[2(1¯1)+1¯2]Φθ1ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2p(δ)p¯(δ)+[I2(1¯1)+I1¯2]Φθ2ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2q(δ)q¯(δ).

Thus, using Lemma 2.5, for each δ we have p(δ)p¯(δ)ϵkκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+(Jξ1+ϖ1,κ;ϑ[2I¯1+1(1I¯2)]Φθ1ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1p(s)p¯(s))(δ)+(Jξ1+ϖ1,κ;ϑ[I2I¯1+I1(1I¯2)]Φθ2ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1q(s)q¯(s))(δ), and q(δ)q¯(δ)ϵkκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)+(Jξ1+ϖ2,κ;ϑ[2(1¯1)+1¯2]Φθ1ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2p(s)p¯(s))(δ)+(Jξ1+ϖ2,κ;ϑ[I2(1¯1)+I1¯2]Φθ2ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2q(s)q¯(s))(δ).

Therefore, p(δ)p¯(δ)+q(δ)q¯(δ)ϵ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)]+ξ1δΦ¯ϖ1κ,ϑ(δ,s)ϑ(s)([2I¯1+1(1I¯2)]Φθ1ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1p(s)p¯(s))ds+ξ1δΦ¯ϖ1κ,ϑ(δ,s)ϑ(s)([I2I¯1+I1(1I¯2)]Φθ2ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1q(s)q¯(s))ds+ξ1δΦ¯ϖ2κ,ϑ(δ,s)ϑ(s)([2(1¯1)+1¯2]Φθ1ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2p(s)p¯(s))ds+ξ1δΦ¯ϖ2κ,ϑ(δ,s)ϑ(s)([I2(1¯1)+I1¯2]Φθ2ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2q(s)q¯(s))ds.

For some constants ϖ(0,κ),κ>0 and >0, we have p(δ)p¯(δ)+q(δ)q¯(δ)ϵ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)]+ξ1δΦ¯ϖκ,ϑ(δ,s)ϑ(s)([2I¯1+1(1I¯2)]Φθ1ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1p(s)p¯(s))ds+ξ1δΦ¯ϖκ,ϑ(δ,s)ϑ(s)([I2I¯1+I1(1I¯2)]Φθ2ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1q(s)q¯(s))ds+ξ1δΦ¯ϖκ,ϑ(δ,s)ϑ(s)([2(1¯1)+1¯2]Φθ1ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2p(s)p¯(s))ds+ξ1δΦ¯ϖκ,ϑ(δ,s)ϑ(s)([I2(1¯1)+I1¯2]Φθ2ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2q(s)q¯(s))ds, where Φ¯ϖκ,ϑ(δ,s)max{Φ¯ϖ1κ,ϑ(δ,s),Φ¯ϖ2κ,ϑ(δ,s)},for all (δ,s)×[ξ1,δ].

Thus, p(δ)p¯(δ)+q(δ)q¯(δ)ϵ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)]+Mξ1δΦ¯ϖκ,ϑ(δ,s)ϑ(s)(p(s)s¯(δ)+q(s)s¯(δ))ds, where M=max{M1,M2}, M1=1[[2I¯1+1(1I¯2)]Φθ1ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1+[2(1¯1)+1¯2]Φθ1ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2], and M2=1[[I2I¯1+I1(1I¯2)]Φθ2ϑ(ξ2,ξ1)(1I¯2)(1¯1)¯2I¯1+[I2(1¯1)+I1¯2]Φθ2ϑ(ξ2,ξ1)(1¯1)(1I¯2)I¯1¯2].

By applying Theorem 2.12, we obtain (p,q)(δ)(p¯,q¯)(δ)ϵ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)]+aδȷ=1MȷκΓκ(ϖȷ)ϑ(s)[ϑ(δ)ϑ(s)]ȷϖκ1×[kκϖ1((ϑ(s)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(s)ϑ(ξ1))ϖ2κ)]dsϵ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)]×kκϖ(M(ϑ(δ)ϑ(ξ1))ϖκ).

Then, we conclude that for each δ, we have (p,q)(δ)(p¯,q¯)(δ)ϵakκϖ[kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ)+kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)], where akκϖ=kκϖ(M(ϑ(ξ2)ϑ(ξ1))ϖκ).

Hence, the system Equation(1)-(2) is κ-Mittag-Leffler-Ulam-Hyers stable with respect to (kκϖ1((ϑ(δ)ϑ(ξ1))ϖ1κ);kκϖ2((ϑ(δ)ϑ(ξ1))ϖ2κ)). If we set v(ϵ)=akκϖϵ, then the problem Equation(1)-(2) is also generalized κ-Mittag-Leffler-Ulam-Hyers stable. □

5. An example

Let k=c0={v=(v1,v2,,vn,),vn0 as n} be the Banach space of real sequences converging to zero with v=supn1|vn|.

Suppose that =[1,2],θȷ=1κ(ζȷ(κϖȷ)+ϖȷ);ȷ=1,2.

Example 5.1.

Taking ζ11,ζ20,ϖ1=ϖ2=12,κ=1,ϑ(δ)=δ,α1=β2=1,α2=β1=0,α3=β3=(0,0,,0,),θ1=1 and θ2=12,δ(1,2], we obtain (21) {(1HD1+12,1;ϑp)(δ)=(CD1+12p)(δ)=1(δ,p(δ),q(δ),(CD1+12p)(δ),(RLD1+12q)(δ)),(1HD1+12,0;ϑq)(δ)=(RLD1+12q)(δ)=2(δ,p(δ),q(δ),(CD1+12p)(δ),(RLD1+12q)(δ)),(21) (22) {p(1)=(0,0,,0,),(J1+12,1;ϑq)(e)=(0,0,,0,),(22) where p=(p1,p2,,pn,),q=(q1,q2,,qn,), 1=(1,1,1,2,,1,n,),2=(2,1,2,2,,2,n,), CD1+12p=(CD1+12p1,CD1+12p2,,CD1+12pn,), RLD1+12q=(RLD1+12q1,RLD1+12q2,,RLD1+12qn,), 1,n(δ,pn(δ),qn(δ),(CD1+12pn)(δ),(RLD1+12qn)(δ))=sin(δ)(1+|pn(δ)|+δ1|qn(δ)|)373eδ+5(1+p(δ)+q(δ)+(CD1+12p)(δ)+(RLD1+12q)(δ)),δ(1,2], and 2,n(δ,pn(δ),qn(δ),(CD1+12pn)(δ),(RLD1+12qn)(δ))=cos(δ)δ1(1+|pn(δ)|+|qn(δ)|)73eδ+2(1+p(δ)+q(δ)+(CD1+12p)(δ)+(RLD1+12q)(δ)),δ(1,2], we have Cθ1,κ;ϑ()=C1,1;ϑ()=C(,R), and Cθ2,κ;ϑ()=C12,1;ϑ()={p:(1,2]R:pδ1C(,R)}.

Since it is clear to see that the functions 1 and 2 is continuous, then (Cd1) is verified.

Further, for each p1,q1,p2,q2,w1,w2,z1,z2k and δ, we have 1(δ,p1,q1,w1,z1)1(δ,p2,q2,w2,z2)sin(δ)373eδ+5|p1p2|+sin(δ)δ1373eδ+5|q1q2|+sin(δ)373eδ+5(|w1w2|+|z1z2|), and |2(δ,p1,q1,w1,z1)2(δ,p2,q2,w2,z2)|cos(δ)δ173eδ+2(|p1p2|+|q1q2|+|w1w2|+|z1z2|), thus, the condition (Cd2) is satisfied with 1=I1=¯1=I¯1=1373e6, and 2=I2=¯2=I¯2=173e3.

The hypothesis (Cd3) is easily verified by taking 3=1373e6, and 4=173e3.

Also l=1(373e61)(73e31)<1.

As all the conditions of Theorem 3.3 are satisfied, then the problem Equation(21)Equation(22) has at least one solution in C1;ϑ([1,2])×C12;ϑ([1,2]), and is κ-Mittag-Leffler-Ulam-Hyers stable with respect to (k112(δ1);k112(δ1)).

6. Conclusion

In this research endeavor, our aim is to establish the existence of solutions for coupled systems governed by the (κ,ϑ)-Hilfer fractional equations. These problems encompass nonlinear implicit fractional differential equations, complete with boundary conditions. Our method for demonstrating the existence of solutions relies on the application of Mönch’s fixed point theorem, complemented by the utilization of the measure of noncompactness technique. Furthermore, we explore the κ-Mittag-Leffler-Ulam-Hyers stability of our problem, facilitated by a generalized Gronwall inequality. To showcase the practical utility of our key findings and to illustrate that the conditions of our theorems can be met, we provide several illustrative examples. Significantly, the fractional operator under investigation serves as an extension, encompassing previously established fractional derivatives like the ϑ-Hilfer fractional derivative already well-documented in the literature. This broader framework enriches the ever-evolving field of fractional calculus, opening up promising avenues for future exploration and advancement in this dynamic and continually evolving domain.

Author’s contributions

The study was carried out in collaboration of all authors. All authors read and approved the final manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Acknowledgement

J. Alzabut would like to thank Prince Sultan University and OSTIM Technical University for their endless support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

Data sharing not applicable to this paper as no data sets were generated or analyzed during the current study.

References

  • Abdo, M. S., Shah, K., Panchal, S. K., & Wahash, H. A. (2020). Existence and Ulam stability results of a coupled system for terminal value problems involving ψ-Hilfer fractional operator. Advances in Difference Equations, 2020(1), 21. doi:10.1186/s13662-020-02775-x
  • Afshari, H., Marasi, H. R., & Alzabut, J. (2021). Applications of new contraction mappings on existence and uniqueness results for implicit ϕ-Hilfer fractional pantograph differential equations. Journal of Inequalities and Applications 2021, 185 (2021). doi:10.1186/s13660-021-02711-x
  • Agrawal, O. P. (2012). Some generalized fractional calculus operators and their applications in integral equations. Fractional Calculus and Applied Analysis, 15(4), 700–711. doi:10.2478/s13540-012-0047-7
  • Ahmad, M., Zada, A., & Wang, X. (2020). Existence, uniqueness and stability of implicit switched coupled fractional differential equations of ψ-Hilfer type. International Journal of Nonlinear Sciences and Numerical Simulation, 21(3–4), 327–337. doi:10.1515/ijnsns-2018-0371
  • Ahmed, I., Limpanukorn, N., & Ibrahim, M. J. (2021). Uniqueness of continuous solution to q-Hilfer fractional hybrid integro-difference equation of variable order. Journal of Mathematical Analysis and Modeling, 2(3), 88–98. doi:10.48185/jmam.v2i3.421
  • Ali, A., Samet, B., Shah, K., & Khan, R. A. (2017). Existence and stability of solution to a toppled systems of differential equations of non–integer order. Boundary Value Problems, 2017, 16.
  • Ali, A., Shah, K., Jarad, F., Gupta, V., & Abdeljawad, T. (2019). Existence and stability analysis to a coupled system of implicit type impulsive boundary value problems of fractional-order differential equations. Advances in Difference Equations, 2019, 1–21.
  • Almalahi, A., & Panchal, K. (2020). Existence results of ψ-Hilfer integro-differential equations with fractional order in Banach space. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, 19(1), 171–192. doi:10.2478/aupcsm-2020-0013
  • Almalahi, M. A., Bazighifan, O., Panchal, S. K., Askar, S. S., & Oros, G. I. (2021). Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators. Fractal and Fractional, 5(4), 178. doi:10.3390/fractalfract5040178
  • Almalahi, M. A., Panchal, S. K., Jarad, F., & Abdeljawad, T. (2021). Ulam–Hyers–Mittag-Leffler stability for tripled system of weighted fractional operator with TIME delay. Advances in Difference Equations, 2021(1), 299. doi:10.1186/s13662-021-03455-0
  • Banas, J., & Goebel, K. (1980). Measures of noncompactness in Banach spaces. New York: Marcel Dekker.
  • Bedi, P., Kumar, A., Abdeljawad, T., & Khan, A. (2021). Study of Hilfer fractional evolution equations by the properties of controllability and stability. Alexandria Engineering Journal, 60(4), 3741–3749. doi:10.1016/j.aej.2021.02.014
  • Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z. A., & Khan, A. (2020). Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Advances in Difference Equations, 2020(1), 615. doi:10.1186/s13662-020-03074-1
  • Benchohra, M., Karap Inar, E., Lazreg, J. E., & Salim, A. (2023). Advanced topics in fractional differential equations: A fixed point approach. Cham: Springer.
  • Benchohra, M., Karap Inar, E., Lazreg, J. E., & Salim, A. (2023). Fractional differential equations: New advancements for generalized fractional derivatives. Cham: Springer.
  • Chu, Y. M., Awan, M. U., Talib, S., Noor, M. A., & Noor, K. I. (2020). Generalizations of Hermite-Hadamard like inequalities involving χκ-Hilfer fractional integrals. Advances in Difference Equations, 2020(1), 594. doi:10.1186/s13662-020-03059-0
  • Derbazi, C., & Baitiche, Z. (2020). Coupled systems of ψ-Caputo differential equations with initial conditions in Banach spaces. Mediterranean Journal of Mathematics, 17(5), 169. doi:10.1007/s00009-020-01603-6
  • Dhaniya, S., Kumar, A., Khan, A., Abdeljawad, T., & Alqudah, M. A. (2023). Existence results of Langevin equations with Caputo-Hadamard fractional operator. Journal of Mathematics, 2023, 1–12. doi:10.1155/2023/2288477
  • Díaz, R., & Teruel, C. (2005). q,k-Generalized gamma and beta functions. Journal of Nonlinear Mathematical Physics, 12(1), 118–134. doi:10.2991/jnmp.2005.12.1.10
  • Guida, K., Hilal, K., Ibnelazyz, L., & Mei, M. (2020). Existence of mild solutions for a class of impulsive Hilfer fractional coupled systems. Advances in Mathematical Physics, 2020, 1–12. doi:10.1155/2020/8406509
  • Herrmann, R. (2011). Fractional calculus: An introduction for physicists. Singapore: World Scientific Publishing Company.
  • Hilfer, R. (2000). Applications of fractional calculus in physics. Singapore: World Scientific.
  • Hyers, D. H. (1941). On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America, 27(4), 222–224. doi:10.1073/pnas.27.4.222
  • Kaushik, K., Kumar, A., Khan, A., & Abdeljawad, T. (2023). Existence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operator. AIMS Mathematics, 8(5), 10160–10176. doi:10.3934/math.2023514
  • Khan, A., Shah, K., Li, Y., & Khan, T. S. (2017). Ulam type stability for a coupled systems of boundary value problems of nonlinear fractional differential equations. Journal of Function Spaces. 2017, 1–8. doi:10.1155/2017/3046013
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Amsterdam: Elsevier Science B.V.
  • Krim, S., Salim, A., Abbas, S., & Benchohra, M. (2023). Functional k-generalized ψ-Hilfer fractional differential equations in b-metric spaces. Pan-American Journal of Mathematics, 2, 5. doi:10.28919/cpr-pajm/2-5
  • Kucche, K. D., & Mali, A. D. (2021). On the nonlinear (k,ψ)-Hilfer fractional differential equations. Chaos, Solitons & Fractals, 152, 111335. doi:10.1016/j.chaos.2021.111335
  • Lin, L., Liu, Y., & Zhao, D. (2021). Study on implicit-type fractional coupled system with integral boundary conditions. Mathematics, 9, 15 pp.
  • Liu, K., Wang, J., & O’Regan, D. (2019). Ulam–Hyers–Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equations. Advances in Difference Equations, 2019(1), 50. doi:10.1186/s13662-019-1997-4
  • Luo, D., Luo, Z., & Qiu, H. (2020). Existence and Hyers-Ulam stability of solutions for a mixed fractional-order nonlinear delay difference equation with parameters. Mathematical Problems in Engineering, 2020, 1–12. doi:10.1155/2020/9372406
  • Monch, H. (1980). BVP for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal., 4(5), 985–999. doi:10.1016/0362-546X(80)90010-3
  • Mubeen, S., & Habibullah, G. M. (2012). k-Fractional integrals and application. International Journal of Contemporary Mathematical Sciences, 7, 89–94.
  • Rashid, S., Aslam Noor, M., Inayat Noor, K., & Chu, Y. M. (2020). Ostrowski type inequalities in the sense of generalized K-fractional integral operator for exponentially convex functions. AIMS Mathematics, 5(3), 2629–2645. doi:10.3934/math.2020171
  • Rassias, T. M. (1978). On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society, 72(2), 297–300. doi:10.2307/2042795
  • Redhwan, S. S., Shaikh, S. L., Abdo, M. S., Shatanawi, W., Abodayeh, K., Almalahi, M. A., & Aljaaidi, T. (2022). Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions. AIMS Mathematics, 7(2), 1856–1872. doi:10.3934/math.2022107
  • Rus, I. A. (2009). Ulam stability of ordinary differential equations. Studia Universitatis Babeș-Bolyai Mathematica, LIV(4), 125–133.
  • Salim, A., Benchohra, M., Lazreg, J. E., & Henderson, J. (2022). On k-generalized ψ-Hilfer boundary value problems with retardation and anticipation. Advances in the Theory of Nonlinear Analysis and Its Application, 6(2), 173–190. doi:10.31197/atnaa.973992
  • Salim, A., Benchohra, M., Lazreg, J. E., & Karap Inar, E. (2021). On k-generalized ψ-Hilfer impulsive boundary value problem with retarded and advanced arguments. Journal of Mathematical Extension, 15, 1–39. doi:10.30495/JME.SI.2021.2187
  • Salim, A., Benchohra, M., Lazreg, J. E., & Zhou, Y. (2023). On k-generalized ψ-Hilfer impulsive boundary value problem with retarded and advanced arguments in Banach spaces. Journal of Nonlinear Evolution Equations and Applications, 2022, 105–126.
  • Salim, A., Bouriah, S., Benchohra, M., Lazreg, J. E., & Karap Inar, E. (2023). A study on k-generalized ψ-Hilfer fractional differential equations with periodic integral conditions. Mathematicsl Methods in the Applied Sciences, 1–18. doi:10.1002/mma.9056
  • Salim, A., Lazreg, J. E., Ahmad, B., Benchohra, M., & Nieto, J. J. (2022). A study on k-generalized ψ-Hilfer derivative operator. Vietnam Journal of Mathematics, 52(1), 25–43. doi:10.1007/s10013-022-00561-8
  • Samko, S. G., Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives. theory and applications. Yverdon: Gordon and Breach.
  • Selvam, A. G. M., Baleanu, D., Alzabut, J., Vignesh, D., & Abbas, S. (2020). On Hyers–Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. Advances in Difference Equations, 2020(1), 1–15. doi:10.1186/s13662-020-02920-6
  • Shah, K., & Tunç, C. (2017). Existence theory and stability analysis to a system of boundary value problem. Journal of Taibah University for Science, 11(6), 1330–1342. doi:10.1016/j.jtusci.2017.06.002
  • Sousa, J. V. C., & Capelas de Oliveira, E. (2019a). A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differential Equations & Applications, 11(1), 87–106. doi:10.7153/dea-2019-11-02
  • Sousa, J. V. C., & Capelas de Oliveira, E. (2019b). Fractional order pseudoparabolic partial differential equation: Ulam–Hyers stability. Bulletin of the Brazilian Mathematical Society, New Series, 50(2), 481–496. doi:10.1007/s00574-018-0112-x
  • Sousa, J. V. C., & de Oliveira, E. C. (2018). On the ψ-Hilfer fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 60, 72–91.
  • Ulam, S. M. (1964). Problems in modern mathematics. New York: Science Editions John Wiley & Sons, Inc.
  • Wang, J., Zada, A., & Waheed, H. (2019). Stability analysis of a coupled system of nonlinear implicit fractional anti-periodic boundary value problem. Mathematical Methods in the Applied Sciences, 42(18), 6706–6732. doi:10.1002/mma.5773
  • Wongcharoen, A., Ntouyas, S. K., & Tariboon, J. (2020). On coupled systems for Hilfer fractional differential equations with nonlocal integral boundary conditions. Journal of Mathematics. 2020, 1–12. pp. doi:10.1155/2020/2875152
  • Zada, A., Pervaiz, B., Alzabut, J., & Shah, S. O. (2020). Further results on Ulam stability for a system of first-order nonsingular delay differential equations. Demonstratio Mathematica, 53(1), 225–235. doi:10.1515/dema-2020-0018