Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 2
197
Views
37
CrossRef citations to date
0
Altmetric
Original

Circadian Rhythms in Serum Bone Markers and Their Relation to the Effect of Etidronate in Rats

, &
Pages 325-336 | Received 10 Oct 2002, Accepted 23 Nov 2002, Published online: 07 Jul 2009
 

Abstract

Circadian rhythmicity is an essential feature of bone metabolism. The present study was undertaken to (Aoshima et al., Citation) determine the changes in bone resorption and formation in rats over 24h, (Black et al., Citation) evaluate the effect of the consecutive administration of etidronate on circadian rhythms of serum bone markers, and (Blumsohn et al., Citation) determine whether the effect of etidronate on bone metabolism is circadian time-dependent. One hundred twenty male Wistar rats, which had been adapted to a 12/12h light/dark cycle, were injected subcutaneously once daily with either 0.5 mgP/kg etidronate or 0.9% NaCl (control group) at 0090, 1300, 1700, 2100, 0100, or 0500h for 10d. Serum was collected and tibiae were dissected 24h after the last injection. Serum pyridinoline (Pyd), tartrate-resistant acid phosphatase (TRAP), osteocalcin (OC), alkaline phosphatase (ALP), calcium (Ca), phosphorus (Pi), calcitonin (CT), and parathyroid hormone (PTH) were determined. Bone mineral density (BMD) in the proximal tibia, and the rate of formation of longitudinal trabecular bone over the past 48h were also determined using a chronological labeling method with NTA-Pb. The results showed characteristic circadian rhythms in serum bone markers in rats, with peaks in both bone resorption and bone formation during the animals' rest span. The administration of etidronate at the different times of the day decreased the level of bone-resorption markers (Pyd and TRAP) without affecting the circadian patterns of markers of bone formation (OC and ALP). However, the magnitude of the decrease due to etidronate was not uniform throughout the day, and was greatest during the daytime. Etidronate increased the BMD in the tibial metaphysis in all of the time-treatment groups, but the magnitude of the increase did not vary with the time of etidronate administration. The present data provide a physiological basis for future studies on bone metabolism and may be important in the design of future experiments and in the interpretation of experimental data.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.