170
Views
74
CrossRef citations to date
0
Altmetric
Research Article

Polymorphisms of Paraoxonase (PON1) and Their Significance in Clinical Toxicology of Organophosphates

ARTICLE

, &
Pages 37-45 | Published online: 19 Feb 2003
 

Abstract

Paraoxonase (PON1) is an HDL-associated enzyme capable of hydrolyzing multiple substrates, including several organophosphorous insecticides and nerve agents, oxidized lipids, and a number of drugs or pro-drugs. Several polymorphisms in the paraoxonase (PON1) gene have been described, which have been shown to affect either the catalytic efficiency of hydrolysis or the expression level of PON1. This review discusses the relevance of these polymorphisms for modulating sensitivity to organophosphorous compounds. Animal studies characterizing the PON1 polymorphisms have demonstrated the relevance of PON1 in modulating OP toxicity and have indicated the importance of an individual's PON1 status (i.e., genotype and phenotype taken together) rather than genotyping alone. Nevertheless, direct confirmation in humans of the relevance of PON1 status in conferring susceptibility to OP toxicity is still elusive. Recent studies examining the involvement of PON1 status in determining OP susceptibility of Gulf War veterans, sheep dippers, and individuals poisoned with chemical warfare agents represent a step in the right direction, but more studies are needed, with better documentation of both the level of exposure and the consequences of exposure.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,501.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.