34
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Do cortical maps adapt to optimize information density?

Pages 41-58 | Received 15 Oct 1998, Published online: 09 Jul 2009
 

Abstract

Topographic maps are found in many biological and artificial neural systems. In biological systems, some parts of these can form a significantly expanded representation of their sensory input, such as the representation of the fovea in the visual cortex. We propose that a cortical feature map should be organized to optimize the efficiency of information transmission through it. This leads to a principle of uniform cortical information density across the map as the desired optimum. An expanded representation in the cortex for a particular sensory area (i.e. a high magnification factor) means that a greater information density is concentrated in that sensory area, leading to finer discrimination thresholds. Improvement may ultimately be limited by the construction of the sensors themselves. This approach gives a good fit to threshold versus cortical area data of Recanzone et al on owl monkeys trained on a tactile frequency-discrimination task.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.