80
Views
41
CrossRef citations to date
0
Altmetric
Original Article

Learning the higher-order structure of a natural sound

&
Pages 261-266 | Received 06 Feb 1996, Published online: 09 Jul 2009
 

Abstract

Unsupervised learning algorithms paying attention only to second-order statistics ignore the phase structure (higher-order statistics) of signals, which contains all the informative temporal and spatial coincidences which we think of as ‘features’. Here we discuss how an Independent Component Analysis (ICA) algorithm may be used to elucidate the higher-order structure of natural signals, yielding their independent basis functions. This is illustrated with the ICA transform of the sound of a fingernail tapping musically on a tooth. The resulting independent basis functions look like the sounds themselves, having similar temporal envelopes and the same musical pitches. Thus they reflect both the phase and frequency information inherent in the data.*This paper was presented at the Workshop on Information Theory and the Brain, held at the University of Stirling, UK, on 4—5 September 1995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.