445
Views
82
CrossRef citations to date
0
Altmetric
Regular papers

Poly (N-isopropylacrylamide) (PNIPAM)-grafted gelatin as thermoresponsive three-dimensional artificial extracellular matrix: molecular and formulation parameters vs. cell proliferation potential

Pages 809-827 | Published online: 02 Apr 2012
 

Abstract

A series of poly(N-isopropylacrylamide)-grafted gelatins (PNIPAM gelatins) of three different graft densities (approx. 11, 22 and 34 graft chains per gelatin molecule) and three different molecular weights of their graft chains (molecular weight approximately 1.2 × 104, 5.0 × 104 and 1.3 × 105 g/mol) were prepared by multiple derivatization of dithiocarbamyl (DC) group in a gelatin molecule and subsequent iniferter (acts as an initiator, transfer-agent and terminator)-based photopolymerization of NIPAM. The weight ratio of PNIPAM graft chains to gelatin (P/G) varied from 1.4 to 49. Aqueous solutions of PNIPAM-gelatins showed thermo-responsiveness, depended on the graft density and the molecular weight of PNIPAM graft chain or P/G. Aqueous solutions (10 or 20%, w/v) of PNIPAM-gelatins with P/G of more than 5.8 were converted to gels at 37°C. Focal plane images of PNIPAM-gelatin gels by confocal laser scanning microscopy revealed that the size of hydrophobically clustered aggregates increased with P/G, whereas the space of microvoids decreased with concentration. Compressive strain–stress measurements revealed that compressive strength of PNIPAM-gelatin increased with P/G. Bovine smooth muscle cells (SMCs)-entrapped gels were produced from PNIPAM-gelatin-containing cell-suspended medium solutions at 37°C. The entrapped cells proliferated in the gel with P/G of more than 12. A higher cell proliferativity was obtained at low concentration (5%, w/v) and higher P/G (> 18). Tissue formation composed of proliferative SMCs and cell-secreted extracellular matrices (collagen) was obtained at 14 days incubation. The inter-relationship between the molecular parameters of PNIPAM-gelatin, internal structural features and cell proliferation potential was discussed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.