Publication Cover
Redox Report
Communications in Free Radical Research
Volume 15, 2010 - Issue 6
151
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Regulation of extracellular-superoxide dismutase in rat retina pericytes

, , , , , , & show all
Pages 250-258 | Published online: 19 Jul 2013
 

Abstract

Diabetic retinopathy (DR) is regarded as a disease of the retinal microvascular system and metabolic abnormalities that are characteristic of oxidative stress and endoplasmic reticulum (ER) stress have been identified in the retina. Pericytes are known to be susceptible to oxidative stress and selective dropout of pericytes is one of the earliest pathological changes in DR. Extracellular-superoxide dismutase (EC-SOD) is a major antioxidative enzyme and protects vascular cells from the damaging effects of superoxide. Treatment with own conditioned medium significantly decreased EC-SOD expression in pericytes, while the expression of vascular endothelial growth factor and tumor necrosis factor-α were elevated. The addition of chemical chaperone 4-phenyl butyric acid significantly suppressed the effects of conditioned medium on EC-SOD and GRP78, a prominent ER-resident chaperone. Moreover, the cell viability of pericytes changed in a manner similar to that of EC-SOD expression. These results suggest that the expressions of EC-SOD should be regulated, at least partially, through ER stress. Continuous flow of culture media neutralized the ER-stress triggered decrease of EC-SOD expression. The stagnation of factors related to ER-stress around pericytes might reduce EC-SOD expression under pathophysiological conditions such as retinal edema, and this could induce and/or promote the intraretinal microvascular impairment and development of pathogenesis in DR.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.