Publication Cover
Neurological Research
A Journal of Progress in Neurosurgery, Neurology and Neurosciences
Volume 32, 2010 - Issue 8
57
Views
3
CrossRef citations to date
0
Altmetric
Articles

Is the spinal cord motoneuron exclusively a target in ALS? Comparison between astroglial reactivity in a rat model of familial ALS and in human sporadic ALS cases

, , , , &
Pages 867-872 | Published online: 19 Jul 2013
 

Abstract

Objective: Motoneurons are the focus of most investigations of amyotrophic lateral sclerosis (ALS), while the astrocyte reaction is regarded as a phenomenon secondary to neuron degeneration. Since astroglial reactivity differed in different studies of human and animal ALS models and often varied from case to case, we examined and compared astrocyte reactivity within the anterior horns of the spinal cord in a transgenic rat model of familial ALS and in human sporadic ALS (sALS) cases.

Methods: Routine histological staining and immunohistochemical reactions to cytoskeletal proteins [neurofilaments, glial fibrillary acidic protein (GFAP), vimentin and tau] and proliferative markers (proliferating cell nuclear antigen and Ki-67).

Results: In human sALS cases and in rats at the early pre-symptomatic and symptomatic stages of the disease, the astroglial reaction was very weak, although there was visible evidence of the morphological manifestations of motoneuron degeneration. Poor immunoreactivity to the GFAP and vimentin antigens and increased expression of tau protein were observed in astrocytes, particularly in the rat model. The astrocyte reaction was evident during a short 'transient' phase of the disease in animals, between the asymptomatic and paretic stages. Proliferating cell nuclear antigen immunoreactivity in glial and neuronal nuclei was observed only in animal material.

Conclusions: Abnormalities in astrocyte cytoskeletal proteins are characteristic features for ALS, both in acquired and congenital forms of the disease. The cytoskeletal aberrations may lead to astroglial dysfunction and disturbances in glutamate uptake that may in turn increase the degeneration of motoneurons.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.