948
Views
101
CrossRef citations to date
0
Altmetric
Reviews

Camelid single-domain antibody-fragment engineering for (pre)clinical in vivo molecular imaging applications: adjusting the bullet to its target

, , &
Pages 1149-1160 | Published online: 16 May 2013
 

Abstract

Introduction: Molecular imaging is a fast developing field and there is a growing need for specific imaging tracers in the clinic. Camelid single-domain antibody-fragments (sdAbs) recently emerged as a new class of molecular imaging tracers.

Areas covered: We review the importance of molecular imaging in the clinic and the use of camelid sdAbs as in vivo molecular imaging tracers. Interest in imaging tracers based on antibody fragments or man-made protein scaffolds expanded over the last years. Camelid sdAbs are small, monomeric binding fragments that are derived from unique heavy-chain-only antibodies. In vivo imaging studies with sdAbs targeting various cell membrane receptors in different disease models have been reported and more sdAb imaging tracers are under development. The first clinical trial with a camelid sdAb as a molecular imaging tracer targeting the breast cancer marker Human Epidermal growth factor Receptor 2 is currently ongoing.

Expert opinion: We expect that the development and use of sdAbs as tracers for both preclinical and clinical molecular imaging applications will become widespread.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 960.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.