117
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Exploitation of stem cell homing for gene delivery

, MD PhD & , MD
Pages 17-30 | Published online: 17 Dec 2007
 

Abstract

Stem cells have been the focus of numerous investigations to treat diseases as far ranging as diabetes, chronic heart failure and multiple sclerosis over the past decade. The process of stem-cell-based repair of acute injury involves homing and engrafting of the stem cell of interest to the site of injury followed by either differentiation of the stem cell to indigenous end-organ cells or liberation of paracrine factors that lead to preservation and/or optimization of organ function. Recognition of the ability of stem cells to home to sites of acute injury suggests that, if appropriately defined and harnessed, stem cell homing could serve as a means of local drug delivery through the infusion of genetically engineering stem cells that secrete gene products of interest. The authors have recently demonstrated the use of this approach in preclinical studies of acute myocardial function. In addition, the use of engineered cells that home to appropriate niches have been used to correct genetic deficiency states (i.e., severe combined immunodeficiency, diabetes mellitus) in patients with otherwise chronic debilitating diseases. This review focuses on exploiting stem cell homing for gene transfer and on the state of the art and the challenges that face the field.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 960.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.