220
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Acid ceramidase upregulation in prostate cancer: role in tumor development and implications for therapy

, MD PhD, , , PhD, , MD PhD, , , PhD, , MD, , MD & , PhD show all
Pages 1449-1458 | Published online: 30 Oct 2009
 

Abstract

Bioactive sphingolipids, such as ceramide, sphingosine and sphingosine-1-phosphate are known bio-effector molecules which play important roles in various aspects of cancer biology including cell proliferation, growth arrest, apoptosis, metastasis, senescence and inflammation. Therefore, enzymes involved in ceramide metabolism are gaining recognition as being critical regulators of cancer cell growth and/or survival. We previously observed that the ceramide metabolizing enzyme, acid ceramidase (AC) is upregulated in tumor tissues. Studies have now concluded that this creates a dysfunctional ceramide pathway, which is responsible for tumor progression and resistance to chemotherapy and radiation. This suggests that development of small-molecule drugs that inhibit AC enzyme activity is a promising approach for improving standard cancer therapy and patient’s clinical outcomes.

Acknowledgements

We apologize to those investigators whose important work was not included due to space limitations.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.