561
Views
30
CrossRef citations to date
0
Altmetric
Reviews

MmpL3 a potential new target for development of novel anti-tuberculosis drugs

Pages 247-256 | Published online: 11 Dec 2013
 

Abstract

Introduction: Tuberculosis (TB) is still a leading cause of mortality in the developing world and there is an unmet clinical need for new drugs with novel mechanism of action. Targeting the complex and unique cell wall of TB-causing pathogen Mycobacterium tuberculosis (Mtb) has been a mainstay of TB drug discovery. Though, the composition of the cell wall of Mtb is well understood, little is known about the assembly process of the cell wall such as the transport of mycolic acids across the cell wall.

Areas covered: Recent research demonstrating MmpL3 protein as a transmembrane transporter of mycolic acids is discussed. In addition, MmpL3 has also been implicated in heme transport. Research describing several diverse chemical inhibitors that inhibit MmpL3 is reviewed.

Expert opinion: Evidence so far suggests MmpL3 is a transporter of mycolic acids. It has emerged as a novel therapeutic target for Mtb that is essential and for which several small molecule inhibitors have been identified. Identifying the interacting partners, understanding the substrate specificity and the mechanism of transport by MmpL3 are some of the gaps in knowledge that need to be addressed.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.