794
Views
89
CrossRef citations to date
0
Altmetric
Original Research

Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness

, , , , , , , , , , & show all
Pages 121-135 | Published online: 11 Dec 2013
 

Abstract

Introduction: Cyclooxygenase-2 (COX-2) is overexpressed in several malignancies and is implicated in breast cancer progression.

Objectives: We investigated whether changes in COX-2 expression may affect epithelial-to-mesenchymal transition (EMT) and then invasive potential of human breast cancer cells, in relationship with hypoxia. COX-2-null MCF-7 human breast cancer cells, MCF-7 cells transiently expressing COX-2 and COX-2-expressing MDA-MB-231 cells were employed.

Results: COX-2 overexpression resulted in downregulation of E-cadherin and β-catenin, upregulation of vimentin, N-cadherin and SNAI1, suggesting EMT occurrence. COX-2-overexpressing MCF-7 cells were also characterized by increased invasiveness and release of matrix-metalloproteinase-9. The above-mentioned characteristics, homologous to those detected in highly invasive MDA-MB-231 cells, were reverted by treatment of COX-2-overexpressing MCF-7 cells with celecoxib, a COX-2-specific inhibitor, partly through the inhibition of COX-2-related intracellular generation of reactive oxygen species. Hypoxia further exacerbated COX-2 expression, EMT changes and invasive ability in both COX-2-overexpressing MCF-7 cells and MDA-MB-231 cells. Finally, immunohistochemistry performed on samples from normal and neoplastic human breast tissues revealed that COX-2-positive malignant cells were also positive for EMT-related antigens, hypoxia-inducible factor (HIF)-2α and the oxidative stress marker heme oxygenase.

Conclusions: These findings support the existence of a direct link between COX-2 overexpression, EMT and invasiveness in human breast cancer cells, emphasizing the role of hypoxic microenvironment.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.