860
Views
105
CrossRef citations to date
0
Altmetric
Review

Enhancing the nail permeability of topically applied drugs

Pages 1267-1282 | Published online: 01 Nov 2008
 

Abstract

The topical therapy of nail diseases, especially of onychomycosis, and to a smaller extent, of nail psoriasis, is desirable to avoid the side effects associated with their systemic therapy, to increase patient compliance and reduce the cost of treatment. Systemic therapy is however the mainstay of treatment due to the poor permeability of the nail plate to topically applied drugs. For effective topical therapy, ungual drug permeation must be enhanced. This can be achieved by disrupting the nail plate using physical techniques or chemical agents. Alternatively, drug permeation into the intact nail plate may be encouraged, for example, by iontophoresis or by formulating the drug within a vehicle which enables high drug partition out of the vehicle and into the nail plate. The physical techniques (manual and electrical nail abrasion, acid etching, ablation by lasers, microporation, application of low-frequency ultrasound and electric currents) and chemicals (thiols, sulphites, hydrogen peroxide, urea, water, enzymes) that have shown ungual enhancer activity are discussed in this review. Optimal drug formulation, while crucial to ungual drug delivery, is only briefly reviewed due to the limited literature.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.