185
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Emerging trend in nano-engineered polyelectrolyte-based surrogate carriers for delivery of bioactives

, MPharm, , PhD, , MPharm, , MPharm, , , MPharm, , MPharm & , PhD show all
Pages 993-1011 | Published online: 18 Aug 2010
 

Abstract

Importance of the field: In recent decades a new colloidal drug delivery system based on layer-by-layer (LbL) technology has emerged, which offers promising means of delivering bioactive agents, specifically biological macromolecules including peptides and DNA. Nano-engineered capsules specifically fabricated from biocompatible and biodegradable polyelectrolytes (PEs) can provide a better option for encapsulation of cells thereby protecting cells from immunological molecules in the body, and their selective permeability can ensure the survival of encapsulated cells.

Areas covered in this review: This review encompasses a strategic approach to fabricate nano-engineered microcapsules through meticulous selection of polyelectrolytes and core materials based on LbL technology. The content of the article provides evidence for its wide array of applications in medical therapeutics, as indicated by the quantity of research and patents in this area. Recent developments and approaches for tuning drug release, biocompatibility and cellular interaction are discussed thoroughly.

What the reader will gain: This review aims to provide an overview on the development of LbL capsules with specific orientation towards drug and macromolecular delivery and its integration with other drug delivery systems, such as liposomes.

Take home message: Selection of PEs for the fabrication of LbL microcapsules has a profound effect on stability, drug release, biocompatibility and encapsulation efficacy. The release can be easily modulated by varying different physicochemical as well as physiological conditions. Scale-up approaches for the fabrication of LbL microcapsules by means of automation must be considered to improve the possibility of application of LbL microcapsules on a large scale.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 876.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.