909
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Probe ADME and Test Hypotheses: a PATH beyond clearance in vitro–in vivo correlations in early drug discovery

&
Pages 1131-1155 | Published online: 11 Jun 2012
 

Abstract

Introduction: In vitro cytochrome P450 (CYP450) metabolic profiling is pursued extensively to optimize drug properties. Still, the in vivo clearance of half of all new chemical entities (NCEs) remains poorly predicted by CYP450 metabolism, based on Novartis rat pharmacokinetic data. The conventional route to illuminating key drivers of in vivo clearance beyond hepatic metabolism is, frequently, the process of elimination, a time-consuming and sometimes resource-intensive practice. A more nimble and efficient diagnosis of drug clearance is imperative to support today's chemistry optimization.

Areas covered: This article reviews in vitro–in vivo clearance correlation (IVIVC) analysis of drugs and NCEs including in silico advances, in vitro opportunities for clearance characterization and guidance for proper interpretation of clearance data. Potential mechanisms for under- and overestimation of in vivo clearance obtained from in vitro approaches are reviewed. The article offers insight into a practical PATH (Probe ADME and Test Hypotheses) for discovery data analysis that can enrich IVIVC development and guide more efficient use of the ADME-PK toolbox.

Expert opinion: In vitro hepatic CYP450 stability measurements remain the most practical way to triage for high metabolic liabilities. Clearance is a complex process involving multiple mechanisms and many factors tend to be overlooked in routine correlation analyses. Equilibrium protein binding, intrinsic permeability and ionization may yield insight into distribution-limited clearance. In addition, hydrophobic character and transporter interaction can be valuable in diagnosing dominant clearance pathways. An integrated ADME approach to clearance interrogation is expected to help refine the in vitro–in silico strategies that guide medicinal chemistry.

Acknowledgements

The authors specifically acknowledge P Nguyen, B Snodgrass and C Boiselle for generation of in vitro clearance data and for valuable discussion. The authors further recognize global Novartis MAP and ADME colleagues for contribution of high quality in vivo and in vitro mechanistic studies that enabled clearance interrogation. The efforts of Novartis Institutes of Biomedical Research IT department have supported much of this analysis and their contributions are greatly appreciated.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.