719
Views
66
CrossRef citations to date
0
Altmetric
Review

Understanding the role of reactive metabolites in drug-induced hepatotoxicity: state of the science

, &
Pages 1415-1427 | Published online: 25 Oct 2008
 

Abstract

Drug-induced liver injury (DILI) represents a major impediment to the development of new drugs and is a leading cause of drug withdrawal. The occurrence of hepatotoxicity has been closely associated with the formation of chemically reactive metabolites. Huge investment has focused on the screening of chemically reactive metabolites to offer a pragmatic approach to produce safer drugs and also reduce drug attrition and prevent market place withdrawal. However, questions surrounding the importance of chemically reactive metabolites still remain. Increasing evidence now exists for the multi-factorial nature of DILI, in particular the role played by the host immune system or disease state in the pathogenesis of DILI. This review aims to evaluate the current measures for the prediction and diagnosis of DILI and to highlight investigations being made to understand the multidimensional nature. Some of the steps being made to generate improved physiological systems to identify more sensitive, reflective mechanism-based biomarkers to aid the earlier identification of DILI and develop safer medicines are also discussed.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.