407
Views
43
CrossRef citations to date
0
Altmetric
Reviews

In silico prediction of substrate properties for ABC-multidrug transporters

, , , , &
Pages 1167-1180 | Published online: 24 Aug 2008
 

Abstract

Overexpression of ABC (ATP-binding cassette)-type drug efflux pumps, such as ABCB1, ABCC1 and ABCG2 in cancer cells confers multi-drug resistance (MDR) and represents a major cause of treatment failures in cancer therapy. Furthermore, there is increasing evidence for the important contribution of ABC-transporters to bioavailability, distribution, elimination and blood–brain barrier permeation of drug candidates. This review presents an overview on the different computational methods and models pursued to predict ABC-transporter substrate properties of drug-like compounds. They range from linear discriminant analysis to pharmacophore modelling and machine learning algorithms. Many of these models show a satisfying performance within the study-specific, defined chemical space but general applicability for the whole drug-like chemical space still needs to be proven. First attempts aiming towards selectivity profiling for ligands of the two polyspecific transporters ABCB1 and ABCG2 is also discussed. This might pave the way for a pharmacological profiling of compound series with special focus on their ADMET (absorption, distribution, metabolism, excretion and toxicity) properties.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.