637
Views
15
CrossRef citations to date
0
Altmetric
Reviews

Repairing mutated proteins – development of small molecules targeting defects in the cystic fibrosis transmembrane conductance regulator

&
Pages 691-708 | Published online: 11 Apr 2013
 

Abstract

Introduction: Cystic fibrosis (CF) is the most prevalent, recessively inherited, disease in the western world. It is characterized by gene mutations in CF transmembrane conductance regulator (CFTR), a transmembrane ion channel that is responsible for chloride secretion in the airway passages. Although much is known about the defects in CFTR and the consequences of these mutations, CF therapy currently focuses on the secondary outcomes and symptoms of the disease. However, developments in CFTR modulators may bring about new therapeutic options.

Areas covered: The authors discuss CFTR defects, as a molecular basis, before presenting and discussing CFTR modulators including correctors and potentiators. Specifically, the authors review promising CFTR modulators currently in preclinical and clinical development along with their medicinal chemistry and structure–activity relationships (SARs) and their in vitro and in vivo pharmacology.

Expert opinion: Although the development of CFTR-targeting agents has little access to structural information from crystal structures, several promising compounds have been discovered so far. Advanced virtual models of CFTR and high-throughput assays have helped the developmental programs. While Ivacaftor, the first of the CFTR potentiators, has now reached clinical use, CFTR corrector development has not been successful thus far. However, intense research of the mutation F508del, the mutation considered the most frequent in CF, could provide new causal treatment options in the future. Furthermore, the eventual synergy with multiple correctors may bring further success. CFTR modulators provide a new personalized therapeutic option where CF therapy is based on the mutations patients carry rather than by simply their symptoms.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.