137
Views
60
CrossRef citations to date
0
Altmetric
Review

Targeting the Met signaling pathway in renal cancer

, &
Pages 785-793 | Published online: 10 Jan 2014
 

Abstract

Renal cell carcinoma (RCC), the most common form of kidney cancer, accounts for 3% of all adult malignancies and its incidence has significantly increased over the last 20 years. RCC claims 13,000 lives annually in the USA and more than 100,000 worldwide. A better understanding of the molecular basis of RCC has facilitated the development of novel and more selective therapeutic approaches. An important role in RCC oncogenesis is played by the receptor for HGF, Met, which has attracted considerable attention, more recently as a molecular target for cancer therapy, and several drugs selectively targeting this pathway are now in clinical trials. This review will focus on efforts to understand the role of the Met signaling pathway in renal cancer and how this has contributed to the development of potent and selective drug candidates.

Financial & competing interests disclosure

This research was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 786.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.