387
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Properties of injection-molded thermoplastic polyester denture base resins

, &
Pages 139-144 | Received 06 Jan 2013, Accepted 30 May 2013, Published online: 21 Nov 2013
 

Abstract

Objective. This study investigated the properties of injection-molded thermoplastic polyester denture base resins. Materials and methods. Two injection-molded thermoplastic polyester denture base resins (polyethylene terephthalate copolymer and polycycloalkylene terephthalate copolymer) were tested. Specimens of each denture base material were fabricated for flexural properties testing, Charpy impact testing and shear bond testing (n = 10). The flexural strength at the proportional limit, elastic modulus, Charpy impact strength and the shear bond strength of the two denture base materials were estimated. Results. The polycycloalkylene terephthalate copolymer denture base resin had significantly lower flexural strength at the proportional limit, lower elastic modulus, higher impact strength and lower shear bond strength compared to the polyethylene terephthalate copolymer denture base resin. Conclusion. The properties of the injection-molded thermoplastic denture base resins composed of polyethylene terephthalate copolymer and polycycloalkylene terephthalate copolymer were different from each other. The polycycloalkylene terephthalate copolymer denture base resin had significantly lower flexural strength at the proportional limit, lower elastic modulus, higher impact strength and lower shear bond strength compared to the polyethylene terephthalate copolymer denture base resin.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.