641
Views
16
CrossRef citations to date
0
Altmetric
Original Article

Effects of different pre-treatment methods on the shear bond strength of orthodontic brackets to demineralized enamel

, , &
Pages 7-13 | Received 20 Apr 2014, Accepted 22 Oct 2014, Published online: 20 Apr 2015
 

Abstract

Objective. To compare the effects of different treatment methods used for the enamel damage, on the shear bond strength (SBS) and fracture mode of orthodontic brackets. Materials and methods. Freshly-extracted 140 premolars were randomly allocated to seven groups: Group I was considered as the control of other groups. The remaining groups were exposed to demineralization. In group II, brackets were directly bonded to the demineralized enamel surface. CPP-ACP paste (GC Tooth Mousse), fluoride varnish (Bifluorid 12), microabrasion with a mixture prepared with 18% hydrochloric acid and fine pumice powder, microabrasion with an agent (Opalustre) and resin infiltrant (Icon®) were applied in Groups III, IV, V, VI and VII, respectively. The specimens were tested for SBS and bond failures were scored according to the Adhesive Remnant Index (ARI). Analysis of variance and Tukey tests were used to compare the SBS of the groups. ARI scores were compared with G-test. The statistical significance was set at p < 0.05 level. Results. Statistically significant differences were found among seven groups (F = 191.697; p < 0.001). The SBSs of groups I (mean = 18.8 ± 2.0 MPa) and VII (mean = 19.1 ± 1.4 MPa) were significantly higher than the other groups. No statistically significant difference was found between groups IV (mean = 11.5 ± 1.2 MPa) and V (mean = 12.6 ± 1.5 MPa). The differences in ARI scores of the groups were statistically significant (p < 0.01). Conclusions. All demineralization treatment methods improve bonding to demineralized enamel. Resin infiltrant application after demineralization showed similar bond strength values as intact enamel.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.