458
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Modeling induced pluripotent stem cells from fibroblasts of Duchenne muscular dystrophy patients

, , , , , , & show all
Pages 12-21 | Received 07 Jan 2013, Accepted 18 Mar 2013, Published online: 19 Nov 2013
 

Abstract

The generation of disease-specific induced pluripotent stem cell (iPS cell) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and for drug screening. Such innovation enables us to obtain autologous cell sources for regenerative medicine. Herein, we report the generation and characterization of iPS cells from the fibroblasts of patients with a family history of Duchenne muscular dystrophy (DMD); these fibroblasts were obtained from patients at 22 gestational weeks of age and exhibit exon duplication from exons 16 to 42. The DMD-iPS cells were generated by the ectopic expression of four transcription factors: OCT4, SOX2, KLF4, and c-MYC; the DMD-iPS cells expressed several pluripotency markers and could be differentiated into various somatic cell types both in vitro and in vivo. Furthermore, DMD-iPSCs showed the differentiation potential to neuronal lineage. Thus, DMD-iPS cells are expected to serve as an in vitro disease model system, which will lay a foundation for the production of autologous cell therapies that avoid immune rejection and enable the correction of gene defects prior to tissue reconstitution.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.