424
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Nicotine contributes to the neural stem cells fate against toxicity of microglial-derived factors induced by Aβ via the Wnt/β-catenin pathway

, , , , &
Pages 257-268 | Received 28 Oct 2014, Accepted 13 Jan 2015, Published online: 22 May 2015
 

Abstract

Recent studies have demonstrated that the molecules secreted from microglias play important roles in the cell fate determination of neural stem cells (NSCs), and nicotinic acetylcholine receptor agonist treatment could reduce neuroinflammation in some neurodegenerative disease models, such as Alzheimer's disease (AD). However, it is not clear how nicotine plays a neuroprotective role in inflammation-mediated central nervous diseases, and its possible mechanisms in the process remain largely elusive. The aim of this study is to improve the survival microenvironment of NSCs co-cultured with microglias in vitro by weakening inflammation that mediated by accumulation of β-amyloid peptide (Aβ). The viability, proliferation, differentiation, apoptosis of NSCs and underlying mechanisms associated with Wnt signaling pathway were investigated. The results showed that Aβ could directly damage NSCs. Furthermore, concomitant to elevated levels of TNF-α, IL-1β derived from microglias, the NSCs had been damaged more severely with the upregulation of Axin 2, p-β-catenin and the downregulation of β-catenin, p-GSK-3β, microtubule-associated protein-2, choline acetyltransferase. However, addition of 10 μmol/L nicotine before microglias treated with Aβ was beneficial to protect the NSCs against neurotoxicity of microglial-derived factors induced by Aβ, which partially rescued proliferation, differentiation and inhibited apoptosis of NSCs via activation of Wnt/β-catenin pathway. Taken together, these data imply that low concentration nicotine attenuates NSCs injury induced by microglial-derived factors via Wnt signaling pathway. Thus, treatment with nicotinic acetylcholine receptor agonist provides a promising research field for neural stem cell fate and therapeutic intervention in neuroinflammation diseases.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.