Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 25, 1995 - Issue 4
44
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Metabolism of thioridazine by microsomal monooxygenases: relative roles of P450 and flavin-containing monooxygenase

, , , &
Pages 377-393 | Received 08 Oct 1994, Published online: 22 Sep 2008
 

Abstract

1. The metabolism of thioridazine by the flavin-containing monooxygenase (FMO) of mouse liver and several P450 isozymes was examined using microsomes, purified FMO, and expressed P450 isozymes. Metabolites were identified by hplc.

2. Thermal inactivation and antibodies to NADPH P450 reductase were used to selectively inactivate FMO and P450 respectively. Inactivation of FMO by heat-treatment reduced the formation of thioridazine-N-oxide and northioridazine, whereas inactivation of P450 resulted in decreased amounts of thioridazine-2-sulphoxide, northioridazine, and thioridazine-5-sulphoxide.

3. Liver microsomes from mouse induced with phenobarbital, 3-methylcholanthrene, or acetone were compared with control microsomes. Phenobarbital induction resulted in increased formation of all metabolites except thioridazine-N-oxide, while retaining a general metabolic profile similar to that achieved with control microsomes. Neither 3-methylcholanthrene nor acetone induction had any effect on the in vitro metabolism of thioridazine.

4. FMO purified from mouse liver produced thioridazine-N-oxide as the major metabolite.

5. Preliminary experiments with commercially prepared microsomes made from cells expressing recombinant human liver P450 2D6 and 3A4 suggested that thioridazine is metabolized by 2D6 but not 3A4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.