474
Views
71
CrossRef citations to date
0
Altmetric
Research Article

Comparative studies on the genotoxicity and cytotoxicity of polymeric gene carriers polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer in Jurkat T-cells

, , , &
Pages 357-366 | Received 06 Oct 2009, Accepted 17 Nov 2009, Published online: 15 Jun 2010
 

Abstract

A safe alternative to the viral system used in gene therapy is a nonviral gene delivery system. Although polyethylenimine (PEI) and polyamidoamine (PAMAM) dendrimer are among the most promising gene-carrier candidates for efficient nonviral gene delivery, safety concerns regarding their toxicity remain. The aim of this study was to scrutinize the underlying mechanism of the cytotoxicity and genotoxicity of PEI (25 kDa) and PAMAM (G4). To our knowledge, this is the first study to explore the genotoxic effect of polymeric gene carriers. To evaluate cell death by PEI and PAMAM, we performed propidium-iodide staining and lactate-dehydrogenase release assays. The genotoxicity of the polymers was measured by comet assay and cytokinesis-block micronucleus assay. PEI- and PAMAM-treated groups induced both necrotic and apoptotic cell death. In the comet assay and micronuclei formation, significant increases in DNA damage were observed in both treatments. We conclude that PEI and PAMAM dendrimer can induce not only a relatively weak apoptotic and a strong necrotic effect, but also a moderate genotoxic effect.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.