139
Views
8
CrossRef citations to date
0
Altmetric
Research Article

D-serine treatment induces oxidative stress in rat brain

, &
Pages 129-138 | Received 24 Mar 2010, Accepted 19 Apr 2010, Published online: 12 Feb 2011
 

Abstract

D-serine plays a significant role in neuronal activity, including learning, memory, neuronal migration at developmental stages, and cell-death signaling. It has been also suggested that D-serine can potantiate the neurotoxicity induced by N-methyl-D-aspartate (NMDA) receptor activation due to its coagonist function. However, little is known about the role of D-serine in oxidative stress mechanisms. The aim of this study was to determine the possible neurotoxic or oxidative effects of the dose- (50–200 mg/kg) and time-dependent (2 or 6 hours) D-serine administration on lipid, protein, DNA, mitochondrial integrity (i.e., function), levels of antioxidant enzyme activities (e.g., catalase, glutathione peroxidase, and superoxide dismutase), and glutathione (GSH) in the rat brain. Our results showed that D-serine significantly increases the levels of lipid peroxidation, protein carbonyls, and DNA damage. In addition, D-serine treatment changes cellular antioxidant status due to the decreased levels of antioxidant enzymes, GSH, and mitochondrial function. Therefore, it is concluded that the regulation of D-serine levels in the brain may be an important target for the development of neuroprotective strategies against neurodegenerative processes where excitotoxicity is involved.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.